https://leetcode.com/problems/4sum-ii/description/
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
Output:
2
Explanation:
The two tuples are:
1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
如果按照常规思路去完成查找需要四层遍历,时间复杂是O(n^4), 显然是行不通的。 因此我们有必要想一种更加高效的算法。
我一个思路就是我们将四个数组分成两组,两两结合。
然后我们分别计算两两结合能够算出的和有哪些,以及其对应的个数
。
如图:
这个时候我们得到了两个hashTable
, 我们只需要进行简单的数学运算就可以得到结果。
- 空间换时间
- 两两分组,求出两两结合能够得出的可能数,然后合并即可。
/*
* @lc app=leetcode id=454 lang=javascript
*
* [454] 4Sum II
*
* https://leetcode.com/problems/4sum-ii/description/
*
* algorithms
* Medium (49.93%)
* Total Accepted: 63.2K
* Total Submissions: 125.6K
* Testcase Example: '[1,2]\n[-2,-1]\n[-1,2]\n[0,2]'
*
* Given four lists A, B, C, D of integer values, compute how many tuples (i,
* j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.
*
* To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤
* N ≤ 500. All integers are in the range of -2^28 to 2^28 - 1 and the result
* is guaranteed to be at most 2^31 - 1.
*
* Example:
*
*
* Input:
* A = [ 1, 2]
* B = [-2,-1]
* C = [-1, 2]
* D = [ 0, 2]
*
* Output:
* 2
*
* Explanation:
* The two tuples are:
* 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
* 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
*
*
*
*
*/
/**
* @param {number[]} A
* @param {number[]} B
* @param {number[]} C
* @param {number[]} D
* @return {number}
*/
var fourSumCount = function(A, B, C, D) {
const sumMapper = {};
let res = 0;
for (let i = 0; i < A.length; i++) {
for (let j = 0; j < B.length; j++) {
sumMapper[A[i] + B[j]] = (sumMapper[A[i] + B[j]] || 0) + 1;
}
}
for (let i = 0; i < C.length; i++) {
for (let j = 0; j < D.length; j++) {
res += sumMapper[- (C[i] + D[j])] || 0;
}
}
return res;
};