-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_mixer.py
181 lines (149 loc) · 4.65 KB
/
train_mixer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
import random
from tqdm import tqdm
import torch
import numpy as np
import pandas as pd
from torch.utils.data.dataloader import DataLoader
from models.multimodal_mixer import SpeechExtractorForMixer, TextEncoderForMixer, MultiModalMixer
from merdataset import *
from config import *
from utils import *
args = None
def parse_args():
parser = argparse.ArgumentParser(description='get arguments')
parser.add_argument(
'--is_training',
default=True,
required=False,
help='run train'
)
parser.add_argument(
'--epochs',
default=train_config['epochs'],
type=int,
required=False,
help='epochs'
)
parser.add_argument(
'--batch',
default=train_config['batch_size'],
type=int,
required=False,
help='batch size'
)
parser.add_argument(
'--shuffle',
default=False,
required=False,
help='shuffle'
)
parser.add_argument(
'--lr',
default=train_config['lr'],
type=float,
required=False,
help='learning rate'
)
parser.add_argument(
'--acc_step',
default=train_config['accumulation_steps'],
type=int,
required=False,
help='accumulation steps'
)
parser.add_argument(
'--cuda',
default='cuda:0',
help='class weight'
)
parser.add_argument(
'--save',
action='store_true',
help='save checkpoint'
)
parser.add_argument(
'--model_name',
type=str,
default='test',
help='checkpoint name to load or save'
)
parser.add_argument(
'--num_blocks',
type=int,
default=0,
help='# of mixer block'
)
args = parser.parse_args()
return args
args = parse_args()
if args.cuda != 'cuda:0':
audio_config['cuda'] = args.cuda
text_config['cuda'] = args.cuda
mixer_config['cuda'] = args.cuda
train_config['cuda'] = args.cuda
if args.num_blocks:
mixer_config['num_blocks'] = args.num_blocks
def train(model,optimizer, dataloader):
model.train()
model.freeze()
loss_func = torch.nn.CrossEntropyLoss(ignore_index=-1).to(train_config['cuda'])
tqdm_train = tqdm(total=len(dataloader), position=1)
accumulation_steps = train_config['accumulation_steps']
loss_list = []
for batch_id, batch in enumerate(dataloader):
batch_x, batch_y = batch[0], batch[1]
outputs = model(batch_x)
loss = loss_func(outputs.to(train_config['cuda']), batch_y.to(train_config['cuda']))
loss_list.append(loss.item())
tqdm_train.set_description('loss is {:.2f}'.format(loss.item()))
tqdm_train.update()
loss = loss / accumulation_steps
loss.backward()
if batch_id % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
optimizer.zero_grad()
tqdm_train.close()
print("Train Loss: {:.5f}".format(sum(loss_list) / len(loss_list)))
def main():
audio_conf = pd.Series(audio_config)
text_conf = pd.Series(text_config)
mixer_conf = pd.Series(mixer_config)
print(audio_conf)
print(text_conf)
print(mixer_conf)
print(train_config)
audio_conf['path'] = './KEMDy20/wav/'
if args.is_training == True:
dataset = MERDataset(data_option='train', path='./data/')
dataset.prepare_text_data(text_conf)
seed = 1024
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
audio = SpeechExtractorForMixer(config=audio_conf)
text = TextEncoderForMixer(config=text_conf)
model = MultiModalMixer(mixer_conf, audio_conf, text_conf, audio, text)
device = args.cuda
print('---------------------',device)
model = model.to(device)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=args.lr)
if 'ckpt' not in os.listdir():
os.mkdir('ckpt')
print(model)
get_params(model)
if args.save:
print("checkpoint will be saved every 5epochs!")
for epoch in range(args.epochs):
dataloader = DataLoader(dataset, batch_size=args.batch, shuffle=args.shuffle,
collate_fn=lambda x: (x, torch.LongTensor([i['label'] for i in x])))
train(model, optimizer, dataloader)
# save model every 5epochs
if (epoch+1) % 5 == 0:
if args.save:
torch.save(model,'./ckpt/{}_epoch{}.pt'.format(args.model_name,epoch))
if __name__ == '__main__':
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "0"
main()