-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
342 lines (298 loc) · 11.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import matplotlib.pyplot as plt
import numpy as np
from struct import unpack
import os, re, cv2
from random import shuffle
from matplotlib.font_manager import FontProperties
from matplotlib import rc
from queue import Queue
import torch
import random
font = FontProperties()
font.set_family('serif')
font.set_name('Times New Roman')
font.set_style('italic')
font.set_size(20)
font_title = FontProperties()
font_title.set_family('serif')
font_title.set_name('Times New Roman')
font_title.set_style('italic')
font_title.set_size(25)
def generate_com_filter(size_u, size_v):
"""
generate com base conv filter
"""
center_u = size_u // 2
center_v = size_v // 2
_filter = np.zeros((size_v, size_u, 2)) # 0 channel is for u, 1 channel is for v
for i in range(size_v):
for j in range(size_u):
_filter[i, j, 0] = (j - center_u) / (size_u - 1)
_filter[i, j, 1] = (i - center_v) / (size_v - 1)
return _filter
def generate_heatmap(img_size, u, v):
"""
Return heatmap base on the location
"""
try:
heatmap = np.zeros((img_size, img_size))
low_u = int(np.floor(u))
low_v = int(np.floor(v))
du = u - low_u
dv = v - low_v
min_d = max(du + dv - 1, 0)
max_d = min(du, dv)
d = (max_d + min_d) / 2
b = du - d
c = dv - d
a = 1 + d - du - dv
heatmap[low_v, low_u] = a
heatmap[low_v, low_u + 1] = b
heatmap[low_v + 1, low_u] = c
heatmap[low_v + 1, low_u + 1] = d
return heatmap
except:
raise Exception("Out of range")
def generate_kernel(heatmap, kernel_size = 3, sigmoid = 1.5):
return cv2.GaussianBlur(heatmap, (kernel_size, kernel_size), sigmoid)
def random_rotated(_img, _uvd, angle=0, scale=1.0):
# random rotated the img within -30 ~ 30
img = _img.copy()
uvd = _uvd.copy()
angle = random.random() * 60 - 30
size = img.shape[0]
M = cv2.getRotationMatrix2D((size // 2, size // 2), angle, scale)
rot_img = cv2.warpAffine(img, M, (size, size))
angle = angle / 180.0 * np.pi
Rot = np.array([[np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)]])
uvd[:, :2] = uvd[:, :2] @ Rot.T
uvd[:, :2] = uvd[:, :2] * scale
return rot_img, uvd
def draw_skeleton(img, joints, config, *, rP = 3, linewidth = 1):
if joints.shape[0] == 14:
img3D = np.zeros((img.shape[0], img.shape[1], 3))
for i in range(3):
img3D[:, :, i] = img
img3D = img3D / np.max(img3D)
img3D = img3D * 0.5 + 0.25
img3D = 1 - img3D
_joint = [(int(joints[i][0]), int(joints[i][1])) for i in range(joints.shape[0])]
colors = [(1, 0, 0), (0.5, 0.5, 0), (0, 1, 0), (0, 0.5, 0.5), (0, 0, 1), (0.5, 0.5, 0.5)]
for i in range(6):
for index in config[i]:
cv2.circle(img3D, _joint[index], rP, colors[i], -1)
for j in range(len(config[i]) - 1):
cv2.line(img3D, _joint[config[i][j]], _joint[config[i][j+1]], colors[i], linewidth)
return img3D
else:
img3D = np.zeros((img.shape[0], img.shape[1], 3))
for i in range(3):
img3D[:, :, i] = img
img3D = img3D / np.max(img3D)
img3D = img3D * 0.5 + 0.25
img3D = 1 - img3D
_joint = [(int(joints[i][0]), int(joints[i][1])) for i in range(joints.shape[0])]
colors = [(1, 0, 0), (0.5, 0.5, 0), (0, 1, 0), (0, 0.5, 0.5), (0, 0, 1)]
for i in range(5):
for index in config[i]:
cv2.circle(img3D, _joint[index], rP, colors[i], -1)
for j in range(len(config[i]) - 1):
cv2.line(img3D, _joint[config[i][j]], _joint[config[i][j+1]], colors[i], linewidth)
return img3D
def draw_skeleton_torch(img, joints, config, *, rP = 3, linewidth = 1):
img = img.numpy()[0]
size = img.shape[0]
joints = joints.numpy() * (size - 1) + np.array([size // 2, size // 2, 0])
img3D = draw_skeleton(img, joints, config, rP=rP, linewidth=linewidth)
img3D = torch.from_numpy(img3D).float().permute(2, 0, 1).contiguous()
return img3D
def draw_features(features):
"""
draw heatmaps and depth maps with 8 cols
Input: features -> ndarray[H, W, C]
"""
C = features.shape[2]
rows = C // 8 + (not C % 8 == 0)
fig, axes = plt.subplots(rows, 8, figsize=(8, rows))
plt.subplots_adjust(wspace=0.0, hspace=0.0)
for i in range(rows):
for j in range(8):
index = i * 8 + j
if index >= C:
axes[i, j].imshow(np.zeros_like(features[:, :, 0]), cmap=plt.cm.jet)
else:
axes[i, j].imshow(features[:, :, index], cmap=plt.cm.jet)
axes[i, j].axis('off')
return fig
def draw_features_torch(features):
features = features.permute(1, 2, 0).detach().cpu().numpy()
return draw_features(features)
def findmax_batch(img):
imgsize = img.shape[1]
temimg = img.reshape((img.shape[0], imgsize ** 2, img.shape[3]))
index = np.argmax(temimg, axis=1)
return index // imgsize, index % imgsize
def find_max(img):
length = img.shape[1]
index = np.argmax(img)
return index // length, index % length
def pixel2world(x, fx, fy, ux, uy):
x[:, :, 0] = (x[:, :, 0] - ux) * x[:, :, 2] / fx
x[:, :, 1] = - (x[:, :, 1] - uy) * x[:, :, 2] / fy
return x
def center_crop(img, center, window):
u, v = center
u = int(u)
v = int(v)
shift = window // 2
dimg = np.pad(img, ((shift, shift), (shift, shift)), "constant", constant_values=0)
return dimg[u:u+2*shift, v:v+2*shift]
def cropimg(imgs, features, predict_us, predict_vs, output_channel, img_window=24):
img_tensors = []
feature_tensors = []
img_size = imgs.shape[1]
feature_size = features.shape[1]
scale = img_size // feature_size
feature_window = img_window // scale
for i in range(imgs.shape[0]):
img = np.pad(imgs[i], ((img_window // 2, img_window // 2), (img_window // 2, img_window // 2)), mode='constant', constant_values=0)
feature = np.pad(features[i], ((feature_window // 2, feature_window // 2), (feature_window // 2, feature_window // 2), (0, 0)), mode='constant', constant_values=0)
predict_u = predict_us[i]
predict_v = predict_vs[i]
sub_tensor_img = []
sub_tensor_feature = []
for j in range(output_channel):
u = predict_u[j]
v = predict_v[j]
sub_tensor_img.append(center_crop(img, (u + img_window // 2,v + img_window // 2), img_window)[:,:,np.newaxis])
sub_tensor_feature.append(center_crop(feature, (u // scale + feature_window // 2, v // scale + feature_window // 2), feature_window))
img_tensors.append(np.concatenate(sub_tensor_img, axis=2)[np.newaxis])
feature_tensors.append(np.concatenate(sub_tensor_feature, axis=2)[np.newaxis])
return np.concatenate(img_tensors, axis=0), np.concatenate(feature_tensors, axis=0)
def compute_error(img, label, norm_d, para, focal_x, focal_y, ux, uy, ground_truth):
ushift, vshift, left, top, origin, min_value, scale = para
x = np.zeros((21, 3))
x[:, 2] = (norm_d + 1) * scale / 2 + min_value
for i in range(21):
x[i, 1], x[i, 0] = find_max(label[:, :, i])
x[:, 0] = (x[:, 0] / (img.shape[0] - 1) * (origin - 1)) - ushift + left
x[:, 1] = (x[:, 1] / (img.shape[0] - 1) * (origin - 1)) - vshift + top
x = pixel2world(x[np.newaxis], focal_x, focal_y, ux, uy)
return np.sqrt(np.sum((x - ground_truth[np.newaxis]) ** 2, axis=2))
def batch_compute_error(imgs, labels, norm_d, paras, focal_x, focal_y, ux, uy, ground_truths):
return np.concatenate([compute_error(imgs[i], labels[i], norm_d[i], paras[i], focal_x, focal_y, ux, uy, ground_truths[i]) for i in range(imgs.shape[0])], axis=0)
def fill_to_square(img):
m, n = img.shape
ushift, vshift = 0, 0
if m > n:
img = np.concatenate([np.zeros((m, (m - n) // 2)), img, np.zeros((m, (m - n) // 2 + (m - n) % 2))], axis=1)
ushift = (m - n) // 2
elif m < n:
img = np.concatenate([np.zeros(((n - m) // 2, n)), img, np.zeros(((n - m) // 2 + (n - m) % 2, n))], axis=0)
vshift = (n - m) // 2
return img, ushift, vshift
def filte_img(img):
value = img[img > 0]
mean_val = np.mean(value)
std_val = np.std(value)
img[np.abs(img - mean_val) / std_val > 3] = 0
return img
def norm_img(img):
value = img[img > 0]
mean = np.mean(value)
max_value = np.max(value)
min_value = np.min(value)
scale = max_value - min_value
img[img > 0] = 2 * (value - min_value) / scale - 1
return img, min_value, scale
def findStep(modelpath):
if not os.path.exists(modelpath) or len(os.listdir(modelpath)) == 0:
print('model path not exist, train with initial point')
return 0
else:
l = os.listdir(modelpath)
step = 0
match = re.compile(r'ckpt-(\d*)')
for name in l:
result = match.findall(name)
if not len(result) == 0:
step = max(step, int(result[0]))
return step
def load_bin(filename):
with open(filename, 'rb') as f:
img_width, img_height, left, top, right, bottom = map(lambda s: int.from_bytes(s, 'little'), [f.read(4) for i in range(6)])
img = np.zeros((bottom - top, right - left))
for i in range(bottom - top):
for j in range(right - left):
img[i][j] = unpack('f', f.read(4))[0]
return img, left, top, right, bottom
def norm(A):
max_val = np.max(A)
min_val = np.min(A)
return (A - min_val) / (max_val - min_val)
def build_gauss(img_size, m, n, kernel_size):
gauss = np.zeros(img_size)
gauss[m, n] = 1
gauss = norm(cv2.GaussianBlur(gauss, kernel_size, 0))
return gauss[:,:,np.newaxis]
def floodFillDepth(img, startPoint, threshold):
mask = np.zeros(img.shape, dtype=np.uint8)
h, w = img.shape
q = Queue()
q.put((startPoint, startPoint))
while not q.empty():
prepoint, point = q.get()
x, y = point
if(x < h and x >= 0 and y < w and y >= 0 and (mask[point] == 0) and np.abs(img[prepoint] - img[point]) <= threshold):
mask[point] = 1
q.put((point, (x + 1, y)))
q.put((point, (x - 1, y)))
q.put((point, (x, y + 1)))
q.put((point, (x, y - 1)))
return mask
def flip(img):
flip_img = np.zeros(img.shape)
for j in range(img.shape[1]):
flip_img[:, j] = img[:, img.shape[1] - j - 1].copy()
return flip_img
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def save_model(model, filename, seed=None, model_param=None):
torch.save({
"state_dict" : model.state_dict(),
"seed" : seed,
"model_param" : model_param,
}, filename)
def load_model(model, filename, eval_mode=False):
checkpoint = torch.load(filename, map_location='cpu')
model.load_state_dict(checkpoint['state_dict'])
if eval_mode:
model.eval()
return checkpoint['seed'], checkpoint['model_param']
def step_loader(dataloder):
data = iter(dataloder)
while True:
try:
x = next(data)
except:
data = iter(dataloder)
x = next(data)
yield x
def select_gpus(gpus="0"):
'''
gpus -> string, examples: "0", "0,1,2"
'''
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
def recover_uvd(uvd, box_size, com, threshold):
uvd[:, :, :2] = uvd[:, :, :2] * (box_size - 1).view(-1, 1, 1)
uvd[:, :, 2] = uvd[:, :, 2] * threshold.unsqueeze(1)
uvd = uvd + com.unsqueeze(1)
return uvd
def xavier_weights_init(m):
classname = m.__class__.__name__
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight.data)