forked from ryukinix/labyrinth-explorer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
215 lines (199 loc) · 7.34 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from collections import deque
import heapq
import itertools
class Node:
'''
Used to store information for the search algorithms
such as the sate, parent node, action to the node,
the path cost from node to node, the problem it is used in
and the depth of the current node
'''
def __init__(self, state, parent=None, action=None, pathCost=0, problem=None):
'''
Used to initialise the node class. A lot of search algorithms need particular
properties of a node. This class is used for all of them
'''
self.state = state
self.parent = parent
self.action = action
self.pathCost = pathCost
self.problem = problem
self.depth=0
if parent:
self.depth = parent.depth +1
def __lt__(self, other):
'''
Used since heapq needs to be able to use the "<" symbol
between two nodes.
'''
if(self.problem==None):
raise Exception
currentNumber = self.problem.f(self)
otherNumber = self.problem.f(other)
if(currentNumber<otherNumber):
return True
return False
def path(self):
'''
Used to get the path from the initial node to the current node
'''
actions = []
actions.append(self.action)
parent = self.parent
while(parent != None):
actions.append(parent.action)
parent = parent.parent
actions = actions[::-1]
return actions[1:]
#-----------------------------------------------------------------------------------------------#
# The rest of the code are search algorithms #
def breadthFirstTreeSearch(problem):
queue = deque()
queue.append(Node(problem.initial))
while queue:
node = queue.popleft()
if problem.goal_test(node.state):
return node
for action in problem.actions(node):
newNode = problem.result(node, action)
queue.append(Node(newNode,node, action))
return None
def breadthFirstGraphSearch(problem):
explored = set()
queue = deque()
queue.append(Node(problem.initial))
while queue:
node = queue.popleft()
if problem.goal_test(node.state):
return node
explored.add(node.state[0:2])
for action in problem.actions(node):
newState = problem.result(node, action)
if(newState[0:2] not in explored):
queue.append(Node(newState,node, action))
return None
def depthFirstTreeSearch(problem):
queue = deque()
queue.append(Node(problem.initial))
while queue:
node = queue.pop()
if problem.goal_test(node.state):
return node
for action in problem.actions(node):
newNode = problem.result(node, action)
queue.append(Node(newNode,node, action))
return None
def depthFirstGraphSearch(problem):
explored = set()
queue = deque()
queue.append(Node(problem.initial))
while queue:
node = queue.pop()
if problem.goal_test(node.state):
return node
explored.add(node.state[0:2])
for action in problem.actions(node):
newState = problem.result(node, action)
if(newState[0:2] not in explored):
queue.append(Node(newState,node, action))
return None
def greedyTreeSearch(problem):
initialNode = Node(problem.initial, problem=problem)
queue = []
heapq.heappush(queue, (problem.h(initialNode), initialNode))
while queue:
node = heapq.heappop(queue)[1]
if problem.goal_test(node.state):
return node
for action in problem.actions(node):
newState = problem.result(node, action)
newNode = Node(newState,node, action,problem=problem)
heapq.heappush(queue, (problem.h(newNode), newNode))
return None
def greedyGraphSearch(problem):
initialNode = Node(problem.initial, problem=problem)
explored = set()
queue = []
heapq.heappush(queue, (problem.h(initialNode), initialNode))
while queue:
node = heapq.heappop(queue)[1]
if problem.goal_test(node.state):
return node
explored.add(node.state[0:2])
for action in problem.actions(node):
newState = problem.result(node, action)
newNode = Node(newState,node, action,problem=problem)
if(newState[0:2] not in explored):
heapq.heappush(queue, (problem.h(newNode), newNode))
return None
def astarTreeSearch(problem):
initialNode = Node(problem.initial, problem=problem)
queue = []
heapq.heappush(queue, (problem.f(initialNode), initialNode))
while queue:
node = heapq.heappop(queue)[1]
if problem.goal_test(node.state):
return node
for action in problem.actions(node):
newState = problem.result(node, action)
newNode = Node(newState,node, action,pathCost = 1,problem=problem)
heapq.heappush(queue, (problem.f(newNode), newNode))
return None
def astarGraphSearch(problem):
initialNode = Node(problem.initial, problem=problem)
explored = set()
queue = []
heapq.heappush(queue, (problem.f(initialNode), initialNode))
while queue:
node = heapq.heappop(queue)[1]
if problem.goal_test(node.state):
return node
explored.add(node.state[0:2])
for action in problem.actions(node):
newState = problem.result(node, action)
newNode = Node(newState,node, action,pathCost = 1,problem=problem)
if(newState[0:2] not in explored):
heapq.heappush(queue, (problem.f(newNode), newNode))
return None
def uniformCostSearch(problem):
initialNode = Node(problem.initial, problem=problem)
explored = set()
queue = []
heapq.heappush(queue, (problem.f(initialNode), initialNode))
while queue:
node = heapq.heappop(queue)[1]
if problem.goal_test(node.state):
return node
explored.add(node.state[0:2])
for action in problem.actions(node):
newState = problem.result(node, action)
newNode = Node(newState,node, action,pathCost = 1,problem=problem)
if(newState[0:2] not in explored):
heapq.heappush(queue, (newNode.pathCost, newNode))
return None
def depthLimitedSearch(problem, limit=50):
def recursive_dls(node, problem, limit):
if problem.goal_test(node.state):
return node
elif node.depth == limit:
return 'cutoff'
else:
cutoff_occurred = False
for action in problem.actions(node):
newState = problem.result(node, action)
newNode = Node(newState,node, action)
result = recursive_dls(newNode, problem, limit)
if result == 'cutoff':
cutoff_occurred = True
elif result is not None:
return result
if cutoff_occurred:
return 'cutoff'
else:
return None
return recursive_dls(Node(problem.initial), problem, limit)
def iterativeDeepeningSearch(problem):
for depth in itertools.count():
result = depthLimitedSearch(problem, depth)
if result != 'cutoff':
return result