From ddff06b9088bbe8b5ef8fb1216fad04608055378 Mon Sep 17 00:00:00 2001 From: Rafa Palacios Date: Fri, 1 Mar 2024 06:41:22 +0000 Subject: [PATCH] Update lingebm.py MInor formatting change --- sharpy/linear/src/lingebm.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/sharpy/linear/src/lingebm.py b/sharpy/linear/src/lingebm.py index ecb692d9b..c9c6a4433 100644 --- a/sharpy/linear/src/lingebm.py +++ b/sharpy/linear/src/lingebm.py @@ -1464,14 +1464,14 @@ def newmark_ss(M, C, K, dt, num_damp=1e-4, M_is_SPD=False): \mathbf{q}_{n} \\ \mathbf{\dot q}_{n} \end{Bmatrix} - - \mathbf{A_{ss1}}^{-1}\mathbf{B_{ss1}} \mathbf{f}_n + - \mathbf{A}_{\mathbf{ss1}}^{-1}\mathbf{B_{ss1}} \mathbf{f}_n Then .. math:: - \mathbf{x}_{n+1} &= \mathbf{A_{ss1}}^{-1}[ + \mathbf{x}_{n+1} &= \mathbf{A}_{\mathbf{ss1}}^{-1}[ \mathbf{A_{ss0}} \mathbf{x}_n + ( - \mathbf{A_{ss0}}\mathbf{A_{ss1}}^{-1}\mathbf{B_{ss1}} + \mathbf{A_{ss0}}\mathbf{A}_{\mathbf{ss1}}^{-1}\mathbf{B_{ss1}} + \mathbf{B_{ss0}} ) \mathbf{f}_n @@ -1480,7 +1480,7 @@ def newmark_ss(M, C, K, dt, num_damp=1e-4, M_is_SPD=False): \mathbf{q}_{n} \\ \mathbf{\dot q}_{n} \end{Bmatrix} - &= \mathbf{x}_n + \mathbf{A_{ss1}}^{-1}\mathbf{B_{ss1}} \mathbf{f}_n + &= \mathbf{x}_n + \mathbf{A}_{\mathbf{ss1}}^{-1}\mathbf{B_{ss1}} \mathbf{f}_n See also :func:`sharpy.linear.src.libss.SSconv` for more details on the elimination of the term multiplying :math:`\mathbf{f}_{n+1}` in the state equation. @@ -1494,11 +1494,11 @@ def newmark_ss(M, C, K, dt, num_damp=1e-4, M_is_SPD=False): where .. math:: - \mathbf{A_{ss}} &= \mathbf{A_{ss1}}^{-1}\mathbf{A_{ss0}} \\ - \mathbf{B_{ss}} &= \mathbf{A_{ss1}}^{-1}(\mathbf{B_{ss0}} - + \mathbf{A_{ss0}}\mathbf{A_{ss1}}^{-1}\mathbf{B_{ss1}}) \\ + \mathbf{A_{ss}} &= \mathbf{A}_{\mathbf{ss1}}^{-1}\mathbf{A_{ss0}} \\ + \mathbf{B_{ss}} &= \mathbf{A_{\mathbf{ss1}}^{-1}(\mathbf{B_{ss0}} + + \mathbf{A_{ss0}}\mathbf{A_{\mathbf{ss1}}^{-1}\mathbf{B_{ss1}}) \\ \mathbf{C_{ss}} &= \mathbf{I} \\ - \mathbf{D_{ss}} &= \mathbf{A_{ss1}}^{-1}\mathbf{B_{ss1}} + \mathbf{D_{ss}} &= \mathbf{A_{\mathbf{ss1}}^{-1}\mathbf{B_{ss1}} .. admonition:: Notation is used in the code