@@ -1464,23 +1464,23 @@ def newmark_ss(M, C, K, dt, num_damp=1e-4, M_is_SPD=False):
1464
1464
\mathbf{q}_{n} \\
1465
1465
\mathbf{\dot q}_{n}
1466
1466
\end{Bmatrix}
1467
- - \mathbf{A_ {ss1}}^{-1}\mathbf{B_{ss1}} \mathbf{f}_n
1467
+ - \mathbf{A}_{\mathbf {ss1}}^{-1}\mathbf{B_{ss1}} \mathbf{f}_n
1468
1468
1469
1469
Then
1470
1470
1471
1471
.. math::
1472
- \mathbf{x}_{n+1} &= \mathbf{A_ {ss1}}^{-1}[
1472
+ \mathbf{x}_{n+1} &= \mathbf{A}_{\mathbf {ss1}}^{-1}[
1473
1473
\mathbf{A_{ss0}} \mathbf{x}_n + (
1474
- \mathbf{A_{ss0}}\mathbf{A_ {ss1}}^{-1}\mathbf{B_{ss1}}
1474
+ \mathbf{A_{ss0}}\mathbf{A}_{\mathbf {ss1}}^{-1}\mathbf{B_{ss1}}
1475
1475
+ \mathbf{B_{ss0}}
1476
1476
)
1477
1477
\mathbf{f}_n
1478
1478
] \\
1479
1479
\begin{Bmatrix}
1480
- \mathbf{\dot q}_{n} \\
1481
- \mathbf{\ddot q}_{n}
1480
+ \mathbf{q}_{n} \\
1481
+ \mathbf{\dot q}_{n}
1482
1482
\end{Bmatrix}
1483
- &= \mathbf{x}_n + \mathbf{B_{ss1}} \mathbf{f}_n
1483
+ &= \mathbf{x}_n + \mathbf{A}_{\mathbf{ss1}}^{-1}\mathbf{ B_{ss1}} \mathbf{f}_n
1484
1484
1485
1485
See also :func:`sharpy.linear.src.libss.SSconv` for more details on the elimination of the term
1486
1486
multiplying :math:`\mathbf{f}_{n+1}` in the state equation.
@@ -1494,11 +1494,11 @@ def newmark_ss(M, C, K, dt, num_damp=1e-4, M_is_SPD=False):
1494
1494
where
1495
1495
1496
1496
.. math::
1497
- \mathbf{A_{ss}} &= \mathbf{A_ {ss1}}^{-1}\mathbf{A_{ss0}} \\
1498
- \mathbf{B_{ss}} &= \mathbf{A_{ss1}}^{-1}(\mathbf{B_{ss0}}
1499
- + \mathbf{A_{ss0}}\mathbf{A_{ss1}}^{-1}\mathbf{B_{ss1}}) \\
1497
+ \mathbf{A_{ss}} &= \mathbf{A}_{\mathbf {ss1}}^{-1}\mathbf{A_{ss0}} \\
1498
+ \mathbf{B_{ss}} &= \mathbf{A_{\mathbf{ ss1}}^{-1}(\mathbf{B_{ss0}}
1499
+ + \mathbf{A_{ss0}}\mathbf{A_{\mathbf{ ss1}}^{-1}\mathbf{B_{ss1}}) \\
1500
1500
\mathbf{C_{ss}} &= \mathbf{I} \\
1501
- \mathbf{D_{ss}} &= \mathbf{B_{ss1}}
1501
+ \mathbf{D_{ss}} &= \mathbf{A_{\mathbf{ss1}}^{-1}\mathbf{ B_{ss1}}
1502
1502
1503
1503
1504
1504
.. admonition:: Notation is used in the code
0 commit comments