-
Notifications
You must be signed in to change notification settings - Fork 127
/
ARIMA_primer_test.py
184 lines (157 loc) · 5.99 KB
/
ARIMA_primer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# coding=utf-8
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from matplotlib.pylab import rcParams
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import acf, pacf
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.stattools import adfuller
rcParams['figure.figsize'] = 15, 6
# 移动平均图
def draw_trend(timeSeries, size):
f = plt.figure(facecolor='white')
# 对size个数据进行移动平均
rol_mean = timeSeries.rolling(window=size).mean()
# 对size个数据进行加权移动平均
rol_weighted_mean = pd.ewma(timeSeries, span=size)
timeSeries.plot(color='blue', label='Original')
rol_mean.plot(color='red', label='Rolling Mean')
rol_weighted_mean.plot(color='black', label='Weighted Rolling Mean')
plt.legend(loc='best')
plt.title('Rolling Mean')
plt.show()
# 自相关和偏相关图,默认阶数为31阶
def draw_acf_pacf(ts, lags=31):
f = plt.figure(facecolor='white')
ax1 = f.add_subplot(211)
plot_acf(ts, lags=31, ax=ax1)
ax2 = f.add_subplot(212)
plot_pacf(ts, lags=31, ax=ax2)
plt.show()
def test_stationarity(timeseries):
# 决定起伏统计
rolmean = pd.rolling_mean(timeseries, window=12) # 对size个数据进行移动平均
rolstd = pd.rolling_std(timeseries, window=12) # 偏离原始值多少
# 画出起伏统计
orig = plt.plot(timeseries, color='blue', label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label='Rolling Std')
plt.legend(loc='best')
plt.title('Rolling Mean & Standard Deviation')
plt.show(block=False)
# 进行df测试
print 'Result of Dickry-Fuller test'
dftest = adfuller(timeseries, autolag='AIC')
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of observations Used'])
for key, value in dftest[4].items():
dfoutput['Critical value(%s)' % key] = value
print dfoutput
# data=pd.read_csv('/Users/wangtuntun/Desktop/AirPassengers.csv')
dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m')
# paese_dates指定日期在哪列 ;index_dates将年月日的哪个作为索引 ;date_parser将字符串转为日期
data = pd.read_csv('D:\\Competition\\AirPassengers.csv', parse_dates=['Month'], index_col='Month',
date_parser=dateparse)
ts = data['#Passengers']
# plt.plot(ts)
# plt.show()
# test_stationarity(ts)
# plt.show()
# 估计estimating
ts_log = np.log(ts)
# plt.plot(ts_log)
# plt.show()
moving_avg = pd.rolling_mean(ts_log, 12)
# plt.plot(moving_avg)
# plt.plot(moving_avg,color='red')
# plt.show()
ts_log_moving_avg_diff = ts_log - moving_avg
# print ts_log_moving_avg_diff.head(12)
ts_log_moving_avg_diff.dropna(inplace=True)
# test_stationarity(ts_log_moving_avg_diff)
# plt.show()
# 差分differencing
ts_log_diff = ts_log.diff(1)
ts_log_diff.dropna(inplace=True)
# test_stationarity(ts_log_diff)
# plt.show()
# 分解decomposing
decomposition = seasonal_decompose(ts_log)
trend = decomposition.trend # 趋势
seasonal = decomposition.seasonal # 季节性
residual = decomposition.resid # 剩余的
'''
plt.subplot(411)
plt.plot(ts_log,label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend,label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal,label='Seasonarity')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual,label='Residual')
plt.legend(loc='best')
plt.tight_layout()
plt.show()
'''
ts_log_decompose = residual
ts_log_decompose.dropna(inplace=True)
# test_stationarity(ts_log_decompose)
# plt.show()
##预测##
# 确定参数
lag_acf = acf(ts_log_diff, nlags=20)
lag_pacf = pacf(ts_log_diff, nlags=20, method='ols')
# q的获取:ACF图中曲线第一次穿过上置信区间.这里q取2
plt.subplot(121)
plt.plot(lag_acf)
plt.axhline(y=0, linestyle='--', color='gray')
plt.axhline(y=-1.96 / np.sqrt(len(ts_log_diff)), linestyle='--', color='gray') # lowwer置信区间
plt.axhline(y=1.96 / np.sqrt(len(ts_log_diff)), linestyle='--', color='gray') # upper置信区间
plt.title('Autocorrelation Function')
# p的获取:PACF图中曲线第一次穿过上置信区间.这里p取2
plt.subplot(122)
plt.plot(lag_pacf)
plt.axhline(y=0, linestyle='--', color='gray')
plt.axhline(y=-1.96 / np.sqrt(len(ts_log_diff)), linestyle='--', color='gray')
plt.axhline(y=1.96 / np.sqrt(len(ts_log_diff)), linestyle='--', color='gray')
plt.title('Partial Autocorrelation Function')
plt.tight_layout()
plt.show()
# AR model
model = ARIMA(ts_log, order=(2, 1, 0))
result_AR = model.fit(disp=-1)
plt.plot(ts_log_diff)
plt.plot(result_AR.fittedvalues, color='red')
plt.title('AR model RSS:%.4f' % sum(result_AR.fittedvalues - ts_log_diff) ** 2)
plt.show()
# MA model
model = ARIMA(ts_log, order=(0, 1, 2))
result_MA = model.fit(disp=-1)
plt.plot(ts_log_diff)
plt.plot(result_MA.fittedvalues, color='red')
plt.title('MA model RSS:%.4f' % sum(result_MA.fittedvalues - ts_log_diff) ** 2)
plt.show()
# ARIMA 将两个结合起来 效果更好
model = ARIMA(ts_log, order=(2, 1, 2))
result_ARIMA = model.fit(disp=-1)
plt.plot(ts_log_diff)
plt.plot(result_ARIMA.fittedvalues, color='red')
plt.title('ARIMA RSS:%.4f' % sum(result_ARIMA.fittedvalues - ts_log_diff) ** 2)
plt.show()
predictions_ARIMA_diff = pd.Series(result_ARIMA.fittedvalues, copy=True)
# print predictions_ARIMA_diff.head()#发现数据是没有第一行的,因为有1的延迟
predictions_ARIMA_diff_cumsum = predictions_ARIMA_diff.cumsum()
# print predictions_ARIMA_diff_cumsum.head()
predictions_ARIMA_log = pd.Series(ts_log.ix[0], index=ts_log.index)
predictions_ARIMA_log = predictions_ARIMA_log.add(predictions_ARIMA_diff_cumsum, fill_value=0)
# print predictions_ARIMA_log.head()
predictions_ARIMA = np.exp(predictions_ARIMA_log)
plt.plot(ts)
plt.plot(predictions_ARIMA)
plt.title('predictions_ARIMA RMSE: %.4f' % np.sqrt(sum((predictions_ARIMA - ts) ** 2) / len(ts)))
plt.show()