forked from Alkistis/class_IDE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexplanatory.ini
executable file
·982 lines (755 loc) · 43.4 KB
/
explanatory.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
# *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*
# * CLASS input parameter file *
# *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*
# This example of input file, intended for CLASS beginners, lists all
# possibilities with detailed comments. You can use a more concise version, in
# which only the arguments in which you are interested would appear. Only
# lines containing an equal sign not preceded by a sharp sign "#" are
# considered by the code, any other line is considered as a comment.
#
# The normal syntax is: parameter = value(s)
# where white spaces do not matter (they are removed automatically
# by the parser unless they are part of the parameter name).
# However, 'parameter' = value(s)
# and "parameter" = value(s)
# are also accepted by the parser since v2.8.0
#
# Input files must have an extension ".ini".
# ----------------------------
# ----> background parameters:
# ----------------------------
# 1) Hubble parameter : either 'H0' in km/s/Mpc or 'h' or '100*theta_s' where the
# latter is the peak scale parameter 100(ds_dec/da_dec) close to 1.042143
# (default: 'h' set to 0.67556)
#H0 = 67.556
h =0.67556
#100*theta_s = 1.042143
# 2) photon density: either 'T_cmb' in K or 'Omega_g' or 'omega_g' (default:
# 'T_cmb' set to 2.7255)
T_cmb = 2.7255
#Omega_g =
#omega_g =
# 3) baryon density: either 'Omega_b' or 'omega_b' (default: 'omega_b' set to
# 0.022032)
#Omega_b =
omega_b = 0.022032
# 4a) ultra-relativistic species / massless neutrino density: either 'N_ur' or
# 'Omega_ur' or 'omega_ur' (default: 'N_ur' set to 3.046) (note: instead of
# 'N_ur' you can pass equivalently 'N_eff', although this syntax is
# deprecated) (one more remark: if you have respectively 1,2,3 massive neutrinos, if you stick to the default value T_ncdm equal to 0.71611, designed to give m/omega of 93.14 eV, and if you want to use N_ur to get N_eff equal to 3.046 in the early universe, then you should pass here respectively 2.0328,1.0196,0.00641)
N_ur = 3.046
#Omega_ur =
#omega_ur =
# 4b) to simulate ultra-relativistic species with non-standard
# properties, you can pass 'ceff2_ur' and 'cvis2_ur' (effective squared
# sound speed and viscosity parameter, like in the Generalised Dark
# Matter formalism of W. Hu) (default: both set to 1/3)
#ceff2_ur =
#cvis2_ur =
# 5) density of cdm (cold dark matter): 'Omega_cdm' or 'omega_cdm' (default:
# 'omega_cdm' set to 0.12038)
#Omega_cdm =
omega_cdm = 0.12038
# 5b) For models with decaying cold dark matter (dcdm) you can choose to pass either:
# 5b1) the current fractional density of dcdm+dr (decaying cold dark
# matter and its relativistic decay radiation): 'Omega_dcdmdr' or
# 'omega_dcdmdr' (default: 'Omega_dcdmdr' set to 0)
Omega_dcdmdr = 0.0
#omega_dcdmdr = 0.0
# 5b2) the rescaled initial value for dcdm density (see 1407.2418 for definitions). If you specify 5b1, 5b2 will be found autamtically by a shooting method, and vice versa. (default: 'Omega_dcdmdr' set to 0, hence so is 'Omega_ini_dcdm')
#Omega_ini_dcdm =
#omega_ini_dcdm =
# 5c) decay constant of dcdm in km/s/Mpc, same unit as H0 above.
Gamma_dcdm = 0.0
# 6) all parameters describing the ncdm sector (i.e. any non-cold dark matter
# relics, including massive neutrinos, warm dark matter, etc.):
#
# -> 'N_ncdm' is the number of distinct species (default: set to 0)
N_ncdm = 0
# -> 'use_ncdm_psd_files' is the list of N_ncdm numbers: 0 means 'phase-space
# distribution (psd) passed analytically inside the code, in the mnodule
# background.c, inside the function background_ncdm_distribution()'; 1 means
# 'psd passed as a file with at list two columns: first for q, second for
# f_0(q)', where q is p/T_ncdm (default: only zeros)
#use_ncdm_psd_files = 0
# -> if some of the previous values are equal to one, 'ncdm_psd_filenames' is
# the list of names of psd files (as many as number of ones in previous entry)
ncdm_psd_filenames = psd_FD_single.dat
# -> 'ncdm_psd_parameters' is an optional list of double parameters to describe
# the analytic distribution function or to modify a p.s.d. passed as a file.
# It is made available in the routine background_ncdm_distribution.
#ncdm_psd_parameters = Nactive, sin^2_12 ,s23 ,s13
ncdm_psd_parameters = 0.3 ,0.5, 0.05
# The remaining parameters should be entered as a list of N_ncdm numbers
# separated by commas:
# -> 'Omega_ncdm' or 'omega_ncdm' or 'm_ncdm' in eV (default: all set to zero);
# with only one of these inputs, CLASS computes the correct value of
# the mass; if both (Omega_ncdm, m_ncdm) or (omega_ncdm, m_ncdm) are
# passed, CLASS will renormalise the psd in order to fulfill both
# conditions.
# Passing zero in the list of m_ncdm's or Omeg_ncdm's means that for
# this component, this coefficient is not imposed, and its value is
# inferred from the other one.
m_ncdm = 0.04, 0.04, 0.04
Omega_ncdm =
# -> 'T_ncdm' is the ncdm temperature in units of photon temperature
# (default: set to 0.71611, which is slightly larger than the
# instantaneous decoupling value (4/11)^(1/3); indeed, this default
# value is fudged to give a ratio m/omega equal to 93.14 eV for
# active neutrinos, as predicted by precise studies of active
# neutrino decoupling, see hep-ph/0506164)
T_ncdm =
# -> 'ksi_ncdm' is the ncdm chemical potential in units of its own temperature
# (default: set to 0)
ksi_ncdm =
# -> 'deg_ncdm' is the degeneracy parameter multiplying the psd: 1 stands for
# 'one family', i.e. one particle + anti-particle (default: set to 1.0)
deg_ncdm =
# -> 'Quadrature strategy' is the method used for the momentum sampling of the
# ncdm distribution function. 0 is the automatic method, 1 is Gauss-Laguerre
# quadrature, 2 is the trapezoidal rule on [0,Infinity] using the transformation
# q->1/t-1. 3 is the trapezoidal rule on [0,q_max] where q_max is the next input.
# (default: set to 0)
Quadrature strategy =
# -> 'Maximum q' is the maximum q relevant only for Quadrature strategy 3.
# (default: set to 15)
Maximum q =
# 7) curvature: 'Omega_k' (default: 'Omega_k' set to 0)
Omega_k = 0.
# 8a) Dark energy contributions. At least one out of three conditions must be satisfied:
# i) 'Omega_Lambda' unspecified.
# ii) 'Omega_fld' unspecified.
# iii) 'Omega_scf' set to a negative value. [Will be refered to as
# unspecified in the following text.]
# The code will then use the first unspecified component to satisfy the
# closure equation (sum_i Omega_i) equals (1 + Omega_k)
# (default: 'Omega_fld' and 'Omega_scf' set to 0 and 'Omega_Lambda' inferred
# by code)
# Omega_Lambda = 0.7
Omega_fld = 0
Omega_scf = 0
# 8b) The flag 'use_ppf' is 'yes' by default, to use the PPF approximation
# (see 0808.3125 [astro-ph]) allowing perturbations to cross the
# phantom divide. Set to 'no' to enforce true fluid equations for
# perturbations. When the PPF approximation is used, you can choose
# the ratio 'c_gamma_over_c_fld' (eq. (16) in 0808.3125). The
# default is 0.4 as recommended by that reference, and implicitely
# assumed in other codes. (default: 'use_ppf' to yes, 'c_gamma_over_c_fld' to 0.4)
use_ppf = yes
c_gamma_over_c_fld = 0.4
# 8c) Choose your equation of state between different models, 'CLP' for
# p/rho = w0_fld + wa_fld (1-a/a0) (Chevalier-Linder-Polarski).
# (default:'fluid_equation_of_state' set to 'CLP')
#fluid_equation_of_state = CLP
# 8c1) equation of state of the fluid in 'CLP' case (p/rho = w0_fld +
# wa_fld (1-a/a0)) and squared sound speed 'cs2_fld' of the fluid
# (this is the sound speed defined in the frame comoving with the
# fluid, i.e. obeying to the most sensible physical
# definition). Generalizing w(a) to a more complicated expressions
# would be easy, for that, have a look into source/background.c at
# the function background_w_fld(). (default: 'w0_fld' set to -1,
# 'wa_fld' to 0, 'cs2_fls' to 1)
w0_fld = -0.9
wa_fld = 0.
cs2_fld = 1
# 8d) Scalar field (scf) initial conditions from attractor solution (assuming
# pure exponential potential). (default: yes)
attractor_ic_scf = yes
# 8e) Scalar field (scf) potential parameters and initial conditions. V equals
# ((\phi-B)^\alpha + A)exp(-lambda*phi), see
# http://arxiv.org/abs/astro-ph/9908085.
#scf_parameters = [scf_lambda, scf_alpha, scf_A, scf_B, phi, phi_prime]
scf_parameters = 10.0, 0.0, 0.0, 0.0, 100.0, 0.0
# If 'attractor_ic_scf' is set to 'no', the last two entries are assumed to be
# the initial values of phi in units of the reduced planck mass m_Pl and the
# conformal time derivative of phi in units of [m_Pl/Mpc]. (Note however that
# CLASS determines the initial scale factor dynamically and the results might not
# be as expected in some models.)
# 8f) Scalar field (scf) tuning parameter: If Omega_scf is negative, the
# following index (0,1,2,...) in scf_parameters will be used for tuning:
scf_tuning_index = 0
# 9) scale factor today 'a_today' (arbitrary and irrelevant for most purposes)
# (default: set to 1)
# a_today = 1.
# 10) Dark Matter interacting with Dark Radiation (idm_dr) and
# interacting Dark Radiation (idr), implemented by
# M. Archidiacono, S. Bohr, and D.C. Hooper following the ETHOS
# framework (1512.05344). Can also take as input the parameters
# of the models of 1507.04351 (with non-abelian dark matter, dark
# gluons...) wicj can be seen as a sub-class of ETHOS. See
# 1907.01496 for more details on both cases.
# -> Amount of idm_dr. Enter either:
# - 'Omega_idm_dr',
# - 'omega_idm_dr', or
# - the fraction 'f_idm_dr' of CDM that should be interacting; the latter option requires
# that Omega_cdm or omega_cdm are non-zero
# default: 0)
Omega_idm_dr = 0.
#omega_idm_dr =
#f_idm_dr =
# -> interacting dark matter mass, 'm_idm' (or equivalently just 'm_dm') in eV (default: 1.0e11)
m_idm = 1.0e11
# -> Amount of interacting dark radiation idr.
# - Can be parameterised through the temperature ratio 'xi_idr' (= T_idr/T_cmb)
# - Can be parameterised through the number of extra relativistic relics 'N_idr' (or indifferently 'N_dg')
# In all cases the parameter is dimensionless.
# (default : 0)
xi_idr =
#N_idr =
# -> Statistical factor to differentiate between fermionic (= 7/8) and bosonic (= 1) dark radiation (default 7/8)
stat_f_idr = 0.875
# -> Strength of the coupling between DM and DR:
#
# - Can be passed indifferently as 'a_idm_dr' or 'a_dark' in ETHOS parameterisation, in units of 1/Mpc.
# Then in ETHOS notations: Gamma_DR-DM = - omega_DM a_dark ((1+z)/10^7)^nindex_dark
# while: Gamma_DM-DR = - 4/3 (rho_DR/rho_DM) omega_DM a_dark ((1+z)/10^7)^nindex_dark
# = - 4/3 omega_DR a_dark (1+z) ((1+z)/10^7)^nindex_dark
# or in CLASS notations: dmu_idm_dr = - Gamma_DR-DM = omega_idm_dr a_idm_dr ((1+z)/10^7)^nindex_idm_dr
#
# - Can be passed as 'Gamma_0_nadm' in NADM parameterisation, in units of 1/Mpc.
# Then in ETHOS notations: Gamma_DR-DM = - 3/4 Omega_DM/Omega_DR Gamma_0_nadm
# while: Gamma_DM-DR = - (1+z) Gamma_0_nadm
# or in CLASS notations: dmu_idm_dr = - Gamma_DR-DM = 3/4 Omega_idm_dr/Omega_idr Gamma_0_nadm
#
# (default : 0)
a_idm_dr = 0.
#Gamma_0_nadm =
# -> Strength of the dark radiation self interactions coupling,
# can be passed indifferently as 'b_idr' (or 'b_dark'), in units of 1/Mpc.
# In ETHOS notations: Gamma_DR-DR = (b_dark/a_dark) (Omega_DR/Omega_DM) Gamma_DR-DM
# In CLASS notations: dmu_idr = - Gamma_DR-DR = (b_idr/a_idm_dr) (Omega_idr/Omega_idm_dr) dmu_idm_dr
# (default : 0)
b_idr =
# -> Power of the temperature dependence of the co-moving idr - idm_dr interaction rate
# Can be passed indifferently as 'nindex_idm_dr' (or 'nindex_dark'), in units of 1/Mpc.
# (default : 4, unless Gamma_0_nadm has been passed, then default changes to 0)
nindex_idm_dr =
# -> Nature of the interacting dark radiation: 'free_streaming' or 'fluid'
# (default = 'free_streaming', unless Gamma_0_nadm has been passed, then default changes to 'fluid')
idr_nature =
# -> idr - idm_dr interaction angular coefficient: 'alpha_idm_dr' (or indifferently 'alpha_dark')
# Should be 3/4 if vector boson mediator; 3/2 if scalar boson mediator.
# In full generality this coefficient may depend on l = 2, 3, 4...
# The user can pass here a list of values with an arbitrary size. The first coefficients will be adjusted
# accordingly. After that, the last value will be repeated.
# For instance, if users passes 3, 2, 1, the code will take alpha_2=3, alpha_3=2, and all others equal to 1.
# (default = all set to 1.5)
alpha_idm_dr = 1.5
# -> idr self-interaction angular coefficient: 'beta_idr' (or indifferently 'beta_dark')
# In full generality this coefficient may depend on l = 2, 3, 4...
# The user can pass here a list of values with an arbitrary size. The first coefficients will be adjusted
# accordingly. After that, the last value will be repeated.
# For instance, if users passes 3, 2, 1, the code will take beta_2=3, beta_3=2, and all others equal to 1.
# (default = all set to 1.5)
beta_idr = 1.5
# -> Precision parameters for idm_dr and idr can be found in precisions.h, with the tag idm_dr or idr
# --------------------------------
# ----> thermodynamics parameters:
# --------------------------------
# 1) primordial Helium fraction 'YHe', e.g. 0.25; if set to 'BBN' or 'bbn', will
# be inferred from Big Bang Nucleosynthesis (default: set to 'BBN')
YHe = BBN
# 2) 'recombination' algorithm set to 'RECFAST' or 'HyRec'
recombination = RECFAST
# 2) parametrization of reionization: 'reio_parametrization' must be one
# of 'reio_none' (no reionization), 'reio_camb' (like CAMB: one
# tanh() step for hydrogen reionization one for second helium
# reionization), 'reio_bins_tanh' (binned history x_e(z) with tanh()
# interpolation between input values), 'reio_half_tanh' (like
# 'reio_camb' excepted that we match the function xe(z) from
# recombination with only half a tanh(z-z_reio)), 'reio_many_tanh'
# (arbitrary number of tanh-like steps with specified ending values,
# a scheme usually more useful than 'reio_bins_tanh'), 'reio_inter'
# (linear interpolation between discrete values of xe(z))... (default:
# set to 'reio_camb')
reio_parametrization = reio_camb
# 3.a.) if 'reio_parametrization' set to 'reio_camb' or 'reio_half_tanh': enter
# one of 'z_reio' or 'tau_reio' (default: 'z_reio' set to 11.357 to get tau_reio of 0.0925), plus
# 'reionization_exponent', 'reionization_width',
# 'helium_fullreio_redshift', 'helium_fullreio_width'
# (default: set to 1.5, 0.5, 3.5, 0.5)
z_reio = 11.357
#tau_reio = 0.0925
reionization_exponent = 1.5
reionization_width = 0.5
helium_fullreio_redshift = 3.5
helium_fullreio_width = 0.5
# 3.b.) if 'reio_parametrization' set to 'reio_bins_tanh': enter number of bins
# and list of z_i and xe_i defining the free electron density at the center
# of each bin. Also enter a dimensionless paramater regulating the
# sharpness of the tanh() steps, independently of the bin width;
# recommended sharpness is 0.3, smaller values will make steps too sharp,
# larger values will make the step very progressive but with discontinuity
# of x_e(z) derivative around z_i values.
# (default: set to 0, blank, blank, 0.3)
binned_reio_num = 3
binned_reio_z = 8,12,16
binned_reio_xe = 0.8,0.2,0.1
binned_reio_step_sharpness = 0.3
# 3.c.) if 'reio_parametrization' set to 'reio_many_tanh': enter number of jumps,
# list of jump redhsifts z_i (central value of each tanh()), list of free electron density x_i after each jump, and common width of all jumps. If you want to end up with all hydrogen reionized but neglecting helium reionization, the first value of x_i in the list should be 1. For each x_i you can also pass the flags -1 or -2. They mean: for -1, after hydrogen + first helium recombination (so the code will substitute a value bigger than one based on Y_He); for -2, after hydrogen + second helium recombination (the code will substitute an even bigger value based on Y_He). You can get results close to reio_camb by setting these parameters to the value showed below (and adapting the second many_tanh_z to the usual z_reio). (default: not set)
many_tanh_num = 2
many_tanh_z = 3.5,11.3
many_tanh_xe = -2,-1
many_tanh_width = 0.5
# 3.d.) if 'reio_parametrization' set to 'reio_inter': enter the number
# of points, the list of redshifts z_i, and the list of free electron
# fraction values x_i. The code will do linear interpolation between
# them. The first z_i should always be 0. Like above, for each x_i, you
# can also pass the flags -1 or -2. They mean: for -1, after the
# hydrogen and the first helium recombination (so the code will
# substitute a value bigger than one based on Y_He); for -2, after the
# hydrogen and the second helium recombination (the code will substitute
# an even bigger value based on Y_He). The last value of x_i should
# always be zero, the code will substitute it with the value that one
# would get in absence of reionization, as computed by the recombination
# code. (default: not set)
reio_inter_num = 8
reio_inter_z = 0, 3, 4, 8, 9, 10, 11, 12
reio_inter_xe = -2, -2, -1, -1, 0.9, 0.5, 0.1, 0
# 4.a) in order to model energy injection from DM annihilation, specify a
# parameter 'annihilation' corresponding to the energy fraction absorbed by
# the gas times the DM cross section divided by the DM mass, (f <sigma*v> /
# m_cdm), see e.g. 0905.0003, expressed here in units of m^3/s/Kg
# (default: set to zero)
annihilation = 0.
# 4.b) you can model simple variations of the above quanity as a function of
# redhsift. If 'annihilation_variation' is non-zero, the function F(z)
# defined as (f <sigma*v> / m_cdm)(z) will be a parabola in log-log scale
# between 'annihilation_zmin' and 'annihilation_zmax', with a curvature
# given by 'annihilation_variation' (must be negative), and with a maximum
# in 'annihilation_zmax'; it will be constant outside this range. To take DM
# halos into account, specify the parameters 'annihilation_f_halo', the
# amplitude of the halo contribution, and 'annihilation_z_halo', the
# characteristic redshift of halos
# (default: no variation, 'annihilation_variation' and 'annihilation_f_halo'
# set to zero).
annihilation_variation = 0.
annihilation_z = 1000
annihilation_zmax = 2500
annihilation_zmin = 30
annihilation_f_halo= 20
annihilation_z_halo= 8
# 4.c) You can also state whether you want to use the on-the-spot approximation
# (default: 'on the spot' is 'yes')
on the spot = yes
# 5) to model DM decay, specify a parameter 'decay' which is equal to the energy
# fraction absorbed by the gas divided by the lifetime of the particle, see
# e.g. 1109.6322, expressed here in 1/s
# (default: set to zero)
decay = 0.
# 6) State whether you want the code to compute the simplest analytic approximation to the photon damping scale (it will be added to the thermodynamics output, and its value at recombination will be stored and displayed in the standard output) (default: 'compute damping scale' set to 'no')
# compute damping scale = yes
# ----------------------------------------------------
# ----> define which perturbations should be computed:
# ----------------------------------------------------
# 1.a) list of output spectra requested:
# - 'tCl' for temperature Cls,
# - 'pCl' for polarization Cls,
# - 'lCl' for CMB lensing potential Cls,
# - 'nCl' (or 'dCl') for density number count Cls,
# - 'sCl' for galaxy lensing potential Cls,
# - 'mPk' for total matter power spectrum P(k) infered from gravitational potential,
# - 'dTk' (or 'mTk') for density transfer functions for each species,
# - 'vTk' for velocity transfer function for each species.
# Warning: both lCl and sCl compute the C_ls of the lensing potential, C_l^phi-phi.
# If you are used to other codes, you may want to deal instead with the deflection
# Cls or the shear/convergence Cls. The relations between them are trivial:
# --> deflection d:
# Cl^dd = l(l+1) C_l^phiphi
# --> convergence kappa and shear gamma: the share the same harmonic power spectrum:
# Cl^gamma-gamma = 1/4 * [(l+2)!/(l-2)!] C_l^phi-phi
# By defaut, the code will try to compute the following cross-correlation Cls (if
# available): temperature-polarisation, temperature-CMB lensing, polarization-CMB
# lensing, CMB lensing-density, and density-lensing. Other cross-correlations are
# not computed because they would slow down the code considerably.
#
# Can be left blank if you do not want to evolve cosmological perturbations at
# all. (default: set to blanck, no perturbation calculation)
output = tCl,pCl,lCl
#output = tCl,pCl,lCl,mPk
#output = mPk,mTk
# 1.b) if you included 'tCl' in the list, you can take into account only some of
# the terms contributing to the temperature spectrum: intrinsic temperature
# corrected by Sachs-Wolfe ('tsw' or 'TSW'), early integrated Sachs-Wolfe
# ('eisw' or 'EISW'), late integrated Sachs-Wolfe ('lisw' or 'LISW'),
# Doppler ('dop' or 'Dop'), polarisation contribution ('pol' or 'Pol'). Put
# below the list of terms to be included
# (defaut: if this field is not passed, all terms will be included)
#temperature contributions = tsw, eisw, lisw, dop, pol
# 1.c) if one of 'eisw' or 'lisw' is turned off, the code will read 'early/late
# isw redshift', the split value of redshift z at which the isw is
# considered as late or early (if this field is absent or left blank, by
# default, 'early/late isw redshift' is set to 50)
#early/late isw redshift =
# 1.d) if you included 'nCl' (or 'dCl') in the list, you can take into account
# only some of the terms contributing to the obsevable number count
# fluctuation spectrum: matter density ('density'), redshift-space and
# Doppler distortions ('rsd'), lensing ('lensing'), or gravitational
# potential terms ('gr'). Put below the list of terms to be included
# (defaut: if this field is not passed, only 'dens' will be included)
#number count contributions = density, rsd, lensing, gr
# 1.e) if you included 'dTk' (or 'mTk') in the list, the code will give
# you by default the transfer function of the scale-invariant Bardeen
# potentials (for whatever gauge you are using). If you need the
# transfer function of additional metric fluctuations, specific to the
# gauge you are using, set the following flag to 'yes' (default:
# set to 'no')
extra metric transfer functions =
# 1.f) if you included 'dTk' or 'vTk' in the list of outputs, you may
# transform your transfer functions into the Nbody gauge by setting
# the following flag to ‘yes'. This will also include the transfer
# function for the metric perturbations H_T’ (exact) and gamma
# (approximate) in the Nbody gauge, see e.g. 1505.04756 and
# 1811.00904. These calculations are more stable whith
# 'gauge=synchronous' (default). To compute H_T' and gamma without
# converting the output to the Nbody gauge, use the previous flag
# 'extra metric transfer functions'. (default: set to 'no').
Nbody gauge transfer functions =
# 2.a) if you want an estimate of the non-linear P(k) and Cls, enter
# 'halofit' or 'Halofit' or 'HALOFIT' for Halofit, and
# 'hmcode' or 'Hmcode' or 'HMcode' or 'HMCODE') for HMcode;
# otherwise leave blank (default: blank, linear P(k) and Cls)
non linear =
# 2.b) if you chose Halofit, and you have Omega0_fld != 0. (i.e. you
# set Omega_lambda=0.) & wa_fld != 0., then you might want to use the
# pk equal method of 0810.0190 and 1601.07230 by setting this flag to
# 'yes' (default: set to 'no')
pk_eq =
# 2.c) if you chose HMcode:
# In HMcode you can specify a baryonic feedback model (otherwise only DM is used).
# Each model depends on two parameters: the minimum concentration "c_min" from the
# Bullock et al. 2001 mass-concentration relation and the halo bloating parameter "eta_0"
# introduced in Mead et al. 2015. In Mead et al. 2015 the parameters c_min and eta_0 are fitted
# to the Cosmic Emulator dark matter only simulation (Heitman et al. 2014) and the
# hydrodynamical OWLS simulations (Schaye et al. 2010, van Daalen et al. 2011).
# You can choose between the 5 models of Mead et al. 2015, Table 4:
# Model (eta_0, c_min) Explanation
# - 'emu_dmonly' (0.603, 3.13) fits the only dark matter Cosmic Emulator simulation (default)
# - 'owls_dmonly' (0.64, 3.43) fits the OWLS simulation of dark matter only
# - 'owls_ref' (0.68, 3.91) fits the OWLS simulation that includes gas cooling, heating,
# star formation and evolution, chemical enrichment and supernovae feedback
# - 'owls_agn' (0.76, 2.32) fits the OWLS simulation that includes AGN feedback
# - 'owls_dblim' (0.70, 3.01) fits the OWLS simulation that has extra supernova energy in wind velocity
# Set 'feedback model' to one of these names,
# or leave blank and pass manually the value of either 'eta_0' or 'c_min'
# (the other one will then be fixed according to equation (30) in Mead et al. 2015),
# or pass manually the two values of 'eta_0' and 'c_min'
# (default: 'feedback model' set to 'nl_emu_dmonly')
feedback model =
eta_0 =
c_min =
# 3) if you want to consider perturbed recombination, enter a word
# containing the letter 'y' or 'Y'. CLASS will then compute the
# perturbation in the ionization fraction x_e and the baryon
# temperature, as in 0707.2727. The initial conformal time will be
# small, therefore you should use the default integrator ndf15
# (i.e. do not set 'evolver' to 0, otherwise the code will be
# slower). (default: neglect perturbed recombination)
#perturbed recombination = yes
# 4) list of modes ('s' for scalars, 'v' for vectors, 't' for tensors). More than
# one letter allowed, can be attached or separated by arbitrary characters;
# letters can be small or capital.
# (default: set to 's')
modes = s
#modes = s,t
# 5) relevant only if you ask for 'tCl, lCl' and/or 'pCl, lCl': if you want the
# spectrum of lensed Cls, enter a word containing the letter 'y' or 'Y'
# (default: no lensed Cls)
lensing = yes
# 6) which perturbations should be included in tensor calculations? write 'exact'
# to include photons, ultra-relativistic species 'ur' and all non-cold dark
# matter species 'ncdm'; write 'massless' to appriximate 'ncdm' as extra
# relativistic species (good approximation if ncdm is still relativistic at
# the time of recombination); write 'photons' to include only photons
# (default: 'massless')
tensor method =
# 7) list of initial conditions for scalars ('ad' for adiabatic, 'bi' for baryon
# isocurvature, 'cdi' for CDM isocurvature, 'nid' for neutrino density
# isocurvature, 'niv' for neutrino velocity isocurvature). More than one of
# these allowed, can be attached or separated by arbitrary characters; letters
# can be small or capital.
# (default: set to 'ad')
ic = ad
#ic = ad&bi&nid
# 8) gauge in which calculations are performed: 'sync' or 'synchronous' or
# 'Synchronous' for synchronous, 'new' or 'newtonian' or 'Newtonian' for
# Newtonian/longitudinal gauge
# (default: set to synchronous)
gauge = synchronous
# ---------------------------------------------
# ----> define primordial perturbation spectra:
# ---------------------------------------------
# 1) primordial spectrum type ('analytic_Pk' for an analytic smooth function with amplitude, tilt, running, etc.; analytic spectra with feature can also be added as a new type;'inflation_V' for a numerical computation of the inflationary primordial spectrum, through a full integration of the perturbation equations, given a parametrization of the potential V(phi) in the observable window, like in astro-ph/0703625; 'inflation_H' for the same, but given a parametrization of the potential H(phi) in the observable window, like in astro-ph/0710.1630; 'inflation_V_end' for the same, but given a parametrization of the potential V(phi) in the whole region between the observable part and the end of inflation; there is also an option 'two scales' in order to specify two amplitudes instead of one amplitude and one tilt, like in the isocurvature mode analysis of the Planck inflation paper (works also for adiabatic mode only; see details below, item 2.c); finally 'external_Pk' allows for the primordial spectrum to be computed externally by some piece of code, or to be read from a table, see 2.d). (default: set to 'analytic_Pk')
P_k_ini type = analytic_Pk
# 2) parameters related to one of the primordial spectrum types (will only be
# read if they correspond to the type selected above)
# 2.a) for type 'analytic_Pk':
# 2.a.1) pivot scale in Mpc-1 (default: set to 0.05)
k_pivot = 0.05
# 2.a.2) scalar adiabatic perturbations: curvature power spectrum value at pivot scale ('A_s' or 'ln10^{10}A_s') OR 'sigma8' (found by iterations using a shooting method), tilt at the same scale 'n_s', and tilt running 'alpha_s' (default: set 'A_s' to 2.215e-9, 'n_s' to 0.9619, 'alpha_s' to 0)
A_s = 2.215e-9
#ln10^{10}A_s = 3.0980
# sigma8 = 0.848365
n_s = 0.9619
alpha_s = 0.
# 2.a.3) isocurvature/entropy perturbations: for each mode xx ('xx' being one of
# 'bi', 'cdi', 'nid', 'niv', corresponding to baryon, cdm, neutrino
# density and neutrino velocity entropy perturbations), enter the
# entropy-to-curvature ratio f_xx, tilt n_xx and running alpha_xx, all
# defined at the pivot scale; e.g. f_cdi of 0.5 means S_cdi/R equal to
# one half and (S_cdi/R)^2 to 0.25
# (default: set each 'f_xx' to 1, 'n_xx' to 1, 'alpha_xx' to 0)
f_bi = 1.
n_bi = 1.5
f_cdi=1.
f_nid=1.
n_nid=2.
alpha_nid= 0.01
# etc.
# 2.a.4) cross-correlation between different adiabatic/entropy mode: for each
# pair (xx, yy) where 'xx' and 'yy' are one of 'ad', 'bi', 'cdi', 'nid',
# 'niv', enter the correlation c_xx_yy (parameter between -1 and 1,
# standing for cosDelta, the cosine of the cross-correlation angle), the
# tilt n_xx_yy of the function cosDelta(k), and its running alpha_xx_yy,
# all defined at the pivot scale. So, for a pair of fully correlated
# (resp. anti-correlated) modes, one should set (c_xx_yy, n_xx_yy,
# alpha_xx_yy) to (1,0,0) (resp. (-1,0,0)
# (default: set each 'c_xx_yy' to 0, 'n_xx_yy' to 0, 'alpha_xx_yy' to 0)
c_ad_bi = 0.5
#n_ad_bi = 0.1
c_ad_cdi = -1.
c_bi_nid = 1.
#n_bi_nid = -0.2
#alpha_bi_nid = 0.002
# etc.
# 2.a.5) tensor mode (if any): tensor-to-scalar power spectrum ratio, tilt,
# running at the pivot scale; if 'n_t' and/or 'alpha_t' is set to 'scc' or
# 'SCC' isntead of a numerical value, it will be inferred from the
# self-consistency condition of single field slow-roll inflation: for n_t,
# -r/8*(2-r/8-n_s); for alpha_t, r/8(r/8+n_s-1)
# (default: set 'r' to 1, 'n_t' to 'scc', 'alpha_t' to 'scc')
r = 1.
n_t = scc
alpha_t = scc
# 2.b) for type 'inflation_V'
# 2.b.1) type of potential: 'polynomial' for a Taylor expansion of the potential around phi_pivot. Other shapes can easily be defined in primordial module.
potential = polynomial
# 2.b.2) for 'inflation_V' and 'polynomial': enter either the coefficients 'V_0', 'V_1', 'V_2', 'V_3', 'V_4' of the Taylor expansion (in units of Planck mass to appropriate power), or their ratios 'R_0', 'R_1', 'R_2', 'R_3', 'R_4' corresponding to (128pi/3)*V_0^3/V_1^2, V_1^2/V_0^2, V_2/V_0, V_1*V_3/V_0, V_1^2*V_4/V_0^3, or the potential-slow-roll parameters 'PSR_0', 'PSR_1', 'PSR_2', 'PSR_3', 'PSR_4', equal respectively to R_0, epsilon_V=R_1/(16pi), eta_V=R_2/(8pi), ksi_V=R_3/(8pi)^2, omega_V=R_4/(8pi)^3 (default: 'V_0' set to 1.25e-13, 'V_1' to 1.12e-14, 'V_2' to 6.95e-14, 'V_3' and 'V_4' to zero).
V_0=1.e-13
V_1=-1.e-14
V_2=7.e-14
V_3=
V_4=
#R_0=2.18e-9
#R_1=0.1
#R_2=0.01
#R_3=
#R_4=
#PSR_0 = 2.18e-9
#PSR_1 = 0.001989
#PSR_2 = 0.0003979
#PSR_3 =
#PSR_4 =
# 2.c) for 'inflation_H': enter either the coefficients 'H_0', 'H_1', 'H_2', 'H_3', 'H_4' of the Taylor expansion (in units of Planck mass to appropriate power), or the Hubble-slow-roll parameters 'HSR_0', 'HSR_1', 'HSR_2', 'HSR_3', 'HSR_4'
H_0=1.e-13
H_1=-1.e-14
H_2=7.e-14
H_3=
H_4=
#HSR_0 = 2.18e-9
#HSR_1 = 0.001989
#HSR_2 = 0.0003979
#HSR_3 =
#HSR_4 =
# 2.d) for type 'inflation_V_end':
# 2.d.1) value of the field at the minimum of the potential after inflation, or at a value in which you want to impose the end of inflation, in hybrid-like models. By convention, the code expects inflation to take place for values smaller than this value, with phi increasing with time (using a reflection symmetry, it is always possible to be in that case) (default: 'phi_end' set to 0)
phi_end =
# 2.d.2) shape of the potential. Refers to functions pre-coded in the primordail module, so far 'polynomial' and 'higgs_inflation'. (default: 'full_potential' set to 0)
full_potential = polynomial
# 2.d.3) parameters of the potential. The meaning of each parameter is explained in the function primrodial_inflation_potential() in source/primordial.c
Vparam0 =
Vparam1 =
Vparam2 =
Vparam3 =
Vparam4 =
# 2.d.4) how much the scale factor a or the product (aH) increases between Hubble crossing for the pivot scale (during inflation) and the end of inflation. You can pass either: 'N_star' (standing for log(a_end/a_pivot)) set to a number; or 'ln_aH_ratio' (standing for log(aH_end/aH_pivot)) set to a number; (default: 'N_star' set to 60)
#ln_aH_ratio = 50
#N_star = 55
# 2.d.5) should the inflation module do its nomral job of numerical integration ('numerical') or use analytical slow-roll formulas to infer the primordial spectrum from the potential ('analytical') (default: 'inflation_behavior' set to 'numerical')
#inflation_behavior = numerical
# 2.e) for type 'two_scales' (currently this option works only for scalar modes, and either for pure adiabatic modes or adiabatic + one type of isocurvature):
# 2.e.1) two wavenumbers 'k1' and 'k2' in 1/Mpc, at which primordial amplitude
# parameters will be given. The value of 'k_pivot' will not be used in
# input but quantities at k_pivot will still be calculated and stored in
# the primordial structure (no default value: compulsory input if 'P_k_ini
# type' has been set to 'two_scales')
k1=0.002
k2=0.1
# 2.e.2) two amplitudes 'P_{RR}^1', 'P_{RR}^2' for the adiabatic primordial
# spectrum (no default value: compulsory input if 'P_k_ini type' has been
# set to 'two_scales')
P_{RR}^1 = 2.3e-9
P_{RR}^2 = 2.3e-9
# 2.e.3) if one isocurvature mode has been turned on ('ic' set e.g. to 'ad,cdi'
# or 'ad,nid', etc.), enter values of the isocurvature amplitude
# 'P_{II}^1', 'P_{II}^2', and cross-correlation amplitude 'P_{RI}^1',
# '|P_{RI}^2|' (see Planck paper on inflation for details on definitions)
P_{II}^1 = 1.e-11
P_{II}^2 = 1.e-11
P_{RI}^1 = -1.e-13
|P_{RI}^2| = 1.e-13
# 2.e.4) set 'special iso' to 'axion' or 'curvaton' for two particular cases:
# 'axion' means uncorrelated, n_ad equal to n_iso, 'curvaton' means fully
# anti-correlated with f_iso<0 (in the conventions of the Planck inflation
# paper this would be called fully correlated), n_iso equal to one; in
# these two cases, the last three of the four paramneters in 2.c.3 will be
# over-written give the input for 'P_{II}^1' (defaut: 'special_iso' left
# blanck, code assumes general case described by four parameters of 2.c.3)
special_iso =
# 2.f) for type 'external_Pk' (see external documentation external_Pk/README.md
# for more details):
# 2.f.1) Command generating the table. If the table is already generated, just
# write "cat <table_file>". The table should have two columns (k, pk) if
# tensors are not requested, or three columns (k, pks, pkt) if they are.
#command = python external_Pk/generate_Pk_example.py
#command = python external_Pk/generate_Pk_example_w_tensors.py
command = cat external_Pk/Pk_example.dat
#command = cat external_Pk/Pk_example_w_tensors.dat
# 2.f.2) If the table is not pregenerated, parameters to be passed to the
# command, in the right order, starting from "custom1" and up to
# "custom10". They must be real numbers.
custom1 = 0.05 # In the example command: k_pivot
custom2 = 2.215e-9 # In the example command: A_s
custom3 = 0.9624 # In the example command: n_s
custom4 = 2e-10 # In the example (with tensors) command: A_t
custom5 = -0.1 # In the example (with tensors) command: n_t
#custom6 = 0
#custom7 = 0
#custom8 = 0
#custom9 = 0
#custom10 = 0
# -------------------------------------
# ----> define format of final spectra:
# -------------------------------------
# 1) maximum l for CLs:
# - 'l_max_scalars' for CMB scalars (temperature, polarization, cmb lensing potential),
# - 'l_max_tensors' for CMB tensors (temperature, polarization)
# - 'l_max_lss' for Large Scale Structure Cls (density, galaxy lensing potential)
# Reducing 'l_max_lss' with respect to l_max_scalars reduces the execution time significantly
# (default: set 'l_max_scalars' to 2500, 'l_max_tensors' to 500, 'l_max_lss' to 300)
l_max_scalars = 2500
l_max_tensors = 500
#l_max_lss = 600
# 2) maximum k in P(k), 'P_k_max_h/Mpc' in units of h/Mpc or 'P_k_max_1/Mpc' in
# units of 1/Mpc. If scalar Cls are also requested, a minimum value is
# automatically imposed (the same as in scalar Cls computation)
# (default: set to 1 1/Mpc)
P_k_max_h/Mpc = 1.
#P_k_max_1/Mpc = 0.7
# 3) value(s) 'z_pk' of redshift(s) for P(k,z) output file(s); can be ordered
# arbitrarily, but must be separated by comas (default: set 'z_pk' to 0)
z_pk = 0
#z_pk = 0., 1.2, 3.5
# 4) if the code is interfaced with routines that need to interpolate P(k,z) at
# various values of (k,z), enter 'z_max_pk', the maximum value of z at which
# such interpolations are needed. (default: set to maximum value in above
# 'z_pk' input)
#z_max_pk = 10.
# 6) parameters for the the matter density number count (option 'nCl' (or 'dCl'))
# or galaxy lensing potential (option 'sCl') Cls:
# 6a) enter here a description of the selection functions W(z) of each
# redshift bin; selection can be set to 'gaussian', 'tophat' or
# 'dirac', then pass a list of N mean redshifts in growing order
# separated by comas, 1 or N widths separated by comas, 1 or N bias
# separated by a comma, and 1 or N magnification bias separated by a
# comma. The width stands for one standard deviation of the gaussian
# (in z space), or for the half-width of the top-hat. Finally,
# non_diagonal sets the number of cross-correlation spectra that you
# want to calculate: 0 means only auto-correlation, 1 means only
# adjacent bins, and number of bins minus one means all correlations
# (default: set to 'gaussian',1,0.1,1.,0.,0)
selection=gaussian
selection_mean = 0.98,0.99,1.0,1.1,1.2
selection_width = 0.1
selection_bias =
selection_magnification_bias =
non_diagonal=4
# [note: for good performances, the code uses the Limber approximation for nCl. If you want high precision even with thin selection functions, increase the default value of the precision parameters l_switch_limber_for_nc_local_over_z, l_switch_limber_for_nc_los_over_z; for instance, add them to the input file with values 10000 and 2000, instead of the default 100 and 30]
# 6b) It is possible to multiply the window function W(z) by a selection function
# 'dNdz' (number of objects per redshift interval). Type the name of the file
# containing the redshift in the first column and the number of objects in
# the second column (do not call it 'analytic*'). Set to 'analytic' to use
# instead the analytic expression from arXiv:1004.4640 (this function can be
# tuned in the module transfer.c, in the subroutine transfer_dNdz_analytic).
# Leave blank to use a uniform distribution (default).
dNdz_selection =
# 6c) It is possible to consider source number counts evolution. Type the name of
# the file containing the redshift on the first column and the number of
# objects on the second column (do not call it 'analytic*'). Set to
# 'analytic' to use instead the analytic expression from Eq. 48 of
# arXiv:1105.5292. Leave blank to use constant comoving number densities
# (default).
dNdz_evolution =
# 7a) file name root 'root' for all output files (if Cl requested, written to
# '<root>cl.dat'; if P(k) requested, written to '<root>pk.dat'; plus similar
# files for scalars, tensors, pairs of initial conditions, etc.; if file with
# input parameters requested, written to '<root>parameters.ini') (default:
# the input module sets automatically 'root' to 'output/<thisfilename>N_',
# where N is the first available integer number, starting from 00, to avoid
# erasing the output of previous runs)
#root = output/test_
# 7b) do you want headers at the beginning of each output file (giving precisions
# on the output units/ format) ? If 'headers' set to something containing the
# letter 'y' or 'Y', headers written, otherwise not written
# (default: written)
headers = yes
# 7c) in all output files, do you want columns to be normalized and ordered with
# the default CLASS definitions or with the CAMB definitions (often idential
# to the CMBFAST one) ? Set 'format' to either 'class', 'CLASS', 'camb' or
# 'CAMB' (default: 'class')
format = class
# 7d) Do you want to write a table of background quantitites in a file? This will
# include H, densities, Omegas, various cosmological distances, sound
# horizon, etc., as a function of conformal time, proper time, scale factor.
# File created if 'write background' set to something containing the letter
# 'y' or 'Y', file written, otherwise not written (default: not written)
write background = no
# 7e) Do you want to write a table of thermodynamics quantitites in a file? File
# is created if 'write thermodynamics' is set to something containing the
# letter 'y' or 'Y'. (default: not written)
write thermodynamics = no
# 7f) Do you want to write a table of perturbations to files for certain
# wavenumbers k? Dimension of k is 1/Mpc. The actual wave numbers are chosen
# such that they are as close as possible to the requested k-values.
k_output_values = #0.01, 0.1, 0.0001
# 7g) Do you want to write the primordial scalar(/tensor) spectrum in a file,
# with columns k [1/Mpc], P_s(k) [dimensionless], ( P_t(k) [dimensionless])?
# File created if 'write primordial' set to something containing the letter
# 'y' or 'Y', file written, otherwise not written (default: not written)
write primordial = no
# 7h) Do you want to have all input/precision parameters which have been read
# written in file '<root>parameters.ini', and those not written in file
# '<root>unused_parameters' ? If 'write parameters' set to something
# containing the letter 'y' or 'Y', file written, otherwise not written
# (default: not written)
write parameters = yeap
# 7i) Do you want a warning written in the standard output when an input
# parameter or value could not be interpreted ? If 'write warnings' set to
# something containing the letter 'y' or 'Y', warnings written, otherwise not
# written (default: not written)
write warnings =
# ----------------------------------------------------
# ----> amount of information sent to standard output:
# ----------------------------------------------------
# Increase integer values to make each module more talkative (default: all set to 0)
input_verbose = 1
background_verbose = 1
thermodynamics_verbose = 1
perturbations_verbose = 1
transfer_verbose = 1
primordial_verbose = 1
spectra_verbose = 1
nonlinear_verbose = 1
lensing_verbose = 1
output_verbose = 1