-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproperties.py
310 lines (221 loc) · 8.85 KB
/
properties.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# import matplotlib.pyplot as plt
import numpy as np
k_B = 8.6e-5
# plt.rc('text', usetex=True)
# plt.rc('font', family='serif', size=12)
# ##### Tungsten ######
#
# Taken from (P.Tolias, 2017)
def Cp_W(T): # units in J/(kg*K)
return (
21.868372
+ 8.068661e-03 * T
- 1e-06 * T**2
+ 1.075862e-09 * T**3
+ 1.406637e04 / T**2
)
def rho_W(T): # units in kg/m**3
"""
(adjusted by factor 1000 as orginial equation in g/cm**3)
"""
T_W_0 = 293.15
return (
19250
- 2.66207e-01 * (T - T_W_0)
- 3.0595e-06 * (T - T_W_0) ** 2
- 9.5185e-09 * (T - T_W_0) ** 3
)
def thermal_cond_W(T): # units in W/(m*K)
return (
149.441
- 45.466e-03 * T
+ 13.193e-06 * T**2
- 1.484e-09 * T**3
+ 3.866e06 / (T + 1) ** 2
)
# (T+1) is there to avoid dividing by 0
# taken from (Frauenfelder, R. 1969)
D_0_W = 2.4e-7 # Diffusivity pre-exponential factor (m^(2).s^(-1))
E_D_W = 0.39 # Diffusivity activation energy (eV)
S_0_W = 1.87e24 # Solubility pre-exponential factor (m^(-3).Pa^(-0.5))
E_S_W = 1.04 # Solutbiility activation energy (eV)
atom_density_W = 6.3222e28
def D_W(T):
return D_0_W * np.exp(-E_D_W / k_B / T)
def S_W(T):
return S_0_W * np.exp(-E_S_W / k_B / T)
# ##### EUROfer ######
#
# Values taken from Materials properties handbook
def Cp_eurofer(T): # units in J/(kg*K)
return -139.66 + 3.4777 * T - 0.0063847 * T**2 + 4.0984e-06 * T**3
# def Cp_eurofer_2(T): # units in J/(kg*K)(Mergia)
# return 2.696*T - 0.00496*T**2 + 3.335e-06*T**3
def rho_eurofer(T): # units in kg/m**3
return 7852.102143 - 0.331026405 * T
def thermal_cond_eurofer(T): # units in W/(m*K)
return 5.4308 + 0.13565 * T - 2.3862e-04 * T**2 + 1.3393e-07 * T**3
# taken from (Chen, 2021)
D_0_eurofer = 3.15e-08 # Diffusivity pre-exponential factor (m2/s)
E_D_eurofer = 0.0622 # Diffusivity activation energy (eV)
S_0_eurofer = 2.4088e23 # Solubility pre-exponential factor (atom/m3 Pa^-0.5)
E_S_eurofer = 0.3026 # Solutbiility activation energy (eV)
atom_density_eurofer = 8.409e28 # (m-3)
trap_density_eurofer = 4.5e23 # (m-3)
trap_energy_eurofer = 0.7804 # (eV)
# recombination coefficient from Liu Journal of Nuclear Materials (2021)
Kr_0_eurofer = 1.4143446334700682e-26
E_Kr_eurofer = -0.25727457261201786
# recombination coefficient from Braun (1980)
# Kr_0_eurofer = 5.9680e-17
# E_Kr_eurofer = 0.888
# recombination coefficient from Esteban (2000)
# Kr_0_eurofer = 4.7127e-31
# E_Kr_eurofer = 2.471
# recombination coefficient instantaneus
# Kr_0_eurofer = 0
# E_Kr_eurofer = 1
def D_eurofer(T):
return D_0_eurofer * np.exp(-E_D_eurofer / k_B / T)
def S_eurofer(T):
return S_0_eurofer * np.exp(-E_S_eurofer / k_B / T)
# ##### LiPi ######
#
# Values taken from (D.Martelli et al, 2019)
def Cp_lipb(T): # units in J/(kg*K)
"""
adjusted by factor 1000 as orginial equation in J/(g*K)
for values of temperature 508K < T < 800K,
"""
return 195 - 9.116e-03 * T
def rho_lipb(T): # units in kg/(m**3)
return 10520.35 - 1.19051 * T
def thermal_cond_lipb(T): # units in W/(m*K)
"""
adjusted by factor 100 as original equation in W/(cm*K))
"""
return 9.14779235 + 0.019631 * T
def visc_lipb(T): # units (Pa s)
return (
0.01555147189
- 4.827051855e-05 * T
+ 5.641475215e-08 * T**2
- 2.2887e-11 * T**3
)
def beta_lipb(T): # units in K-1
return 1.1221e-04 + 1.531e-08 * T
rho_0_lipb = 9808.2464435 # value T = 300K, units in kg/(m**3)
# taken from (Reiter, 1990)
D_0_lipb = 4.03e-08 # Diffusivity coefficient pre-exponential factor
E_D_lipb = 0.2021 # Diffusivity coefficient activation energy (eV)
# taken from (Aiello, 2008)
S_0_lipb = 1.427214e23 # Solubility coefficient pre-exponential factor
E_S_lipb = 0.133 # Solutbiility coefficient activation energy (eV)
def D_lipb(T):
return D_0_lipb * np.exp(-E_D_lipb / k_B / T)
def S_lipb(T):
return S_0_lipb * np.exp(-E_S_lipb / k_B / T)
# ##### Al2O3 - Permeation barrier ##### #
# taken from ()
D_0_al2o3 = 7.35e-07 # Diffusivity coefficient pre-exponential factor
E_D_al2o3 = 1.899 # Diffusivity coefficient activation energy (eV)
S_0_al2o3 = 2.519e25 # Solubility coefficient pre-exponential factor
E_S_al2o3 = 0.902 # Solutbiility coefficient activation energy (eV)
def D_al2o3(T):
return D_0_al2o3 * np.exp(-E_D_al2o3 / k_B / T)
def S_al2o3(T):
return S_0_al2o3 * np.exp(-E_S_al2o3 / k_B / T)
# Al taken from (Hydrogen Permeation Measurements on Alumina - E.Serra 2005)
D_0_al = 9.7e-08 # Diffusivity coefficient pre-exponential factor
E_D_al = 0.829 # Diffusivity coefficient activation energy (eV)
S_0_al = 9.133e19 # Solubility coefficient pre-exponential factor
E_S_al = 0.234 # Solutbiility coefficient activation energy (eV)
# ##### Plotting Data ##### #
if __name__ == "__main__":
def tick_function(X):
V = 1000 / (X)
return ["%.0f" % z for z in V]
T = np.arange(500, 900, step=1)
red_W = (171 / 255, 15 / 255, 26 / 255)
grey_eurofer = (130 / 255, 130 / 255, 130 / 255)
darkening_factor_green = 0.75
green_lipb = (
darkening_factor_green * 146 / 255,
darkening_factor_green * 196 / 255,
darkening_factor_green * 125 / 255,
)
# ##### Thermophyical properties ######################################## #
# ##### Density ##### #
plt.figure()
plt.plot(T, rho_W(T), label="W", color=red_W)
plt.plot(T, rho_eurofer(T), label="Eurofer", color=grey_eurofer)
plt.plot(T, rho_lipb(T), label="LiPb", color=green_lipb)
plt.xlabel(r"T (K)")
plt.ylabel(r"$\rho$ (Kg m$^{-3}$)")
# ##### Specific heat capacity ##### #
plt.figure()
plt.plot(T, Cp_W(T), label="W", color=red_W)
plt.plot(T, Cp_eurofer(T), label="Eurofer", color=grey_eurofer)
plt.plot(T, Cp_lipb(T), label="LiPb", color=green_lipb)
plt.xlabel(r"T (K)")
plt.ylabel(r"$c_p$ (J kg$^{-1}$ K$^{-1}$)")
# #### Thermal conductivity ##### #
plt.figure()
plt.plot(T, thermal_cond_W(T), label="W", color=red_W)
plt.plot(T, thermal_cond_eurofer(T), label="Eurofer", color=grey_eurofer)
plt.plot(T, thermal_cond_lipb(T), label="LiPb", color=green_lipb)
plt.xlabel(r"T (K)")
plt.ylabel(r"$\lambda$ (W m$^{-1}$ K$^{-1}$)")
# #### Viscosity ##### #
plt.figure()
plt.plot(T, visc_lipb(T), label="LiPb", color=green_lipb)
plt.xlabel(r"T (K)")
plt.ylabel(r"Viscosity (Pa s)")
# #### Thermal expansion coefficient ##### #
plt.figure()
plt.plot(T, beta_lipb(T), label="LiPb", color=green_lipb)
plt.xlabel(r"T (K)")
plt.ylabel(r"Thermal expansion coefficient")
plt.ylim(bottom=0, top=0.0002)
# #### Hydrogen transport properties ################################### #
# #### Diffusivity ##### #
# plt.figure(figsize=(6.4, 4.8/2))
fig, axs = plt.subplots(2, 1, sharex=True)
plt.sca(axs[0])
plt.plot(1000 / T, D_eurofer(T), label="Eurofer", color=grey_eurofer)
plt.plot(1000 / T, D_lipb(T), label="PbLi", color=green_lipb)
plt.plot(1000 / T, D_W(T), label="W", color=red_W)
plt.annotate("EUROFER", (0.02 + 1000 / T[0], D_eurofer(T[0])), color=grey_eurofer)
plt.annotate("LiPb", (0.02 + 1000 / T[0], D_lipb(T[0])), color=green_lipb)
plt.annotate("W", (0.02 + 1000 / T[0], D_W(T[0])), color=red_W)
# plt.xlabel(r"1000/T (K)")
plt.ylabel(r"Diffusivity (m$^{2}$ s$^{-1}$)")
plt.yscale("log")
plt.minorticks_on()
plt.grid(which="minor", alpha=0.3)
plt.grid(which="major", alpha=0.7)
# #### Solubility ##### #
plt.sca(axs[1])
# plt.figure(figsize=(6.4, 4.8/2))
# plt.plot(1000/T, S_W(T), label="W", color=red_W)
plt.plot(1000 / T, S_al2o3(T), label="Barrier", color="black")
plt.plot(1000 / T, S_eurofer(T), label="Eurofer", color=grey_eurofer)
plt.plot(1000 / T, S_lipb(T), label="LiPb", color=green_lipb)
plt.xlabel(r"1000/T (K)")
plt.ylabel(r"Solubility (m$^{-3}$Pa$^{-0.5}$)")
plt.yscale("log")
plt.annotate("EUROFER", (0.02 + 1000 / T[0], S_eurofer(T[0])), color=grey_eurofer)
plt.annotate("LiPb", (0.02 + 1000 / T[0], S_lipb(T[0])), color=green_lipb)
plt.annotate("W", (0.02 + 1000 / T[0], S_W(T[0])), color=red_W)
plt.xlim(right=2.2)
for fig_num in plt.get_fignums():
plt.figure(fig_num)
if plt.gca().get_yscale() == "linear":
plt.ylim(bottom=0)
# plt.yscale("log")
# plt.legend()
plt.minorticks_on()
plt.grid(which="minor", alpha=0.3)
plt.grid(which="major", alpha=0.5)
plt.tight_layout()
plt.show()