-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
194 lines (153 loc) · 7.46 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import functools
import os
import random
import shutil
from argparse import ArgumentParser
import model_score_based
import numpy as np
import setproctitle
import torch
import torch.utils.data
from test_every_batch import forward
import utils
from data_dynamic import PartNetPartDataset
from utils import diffusion_coeff, marginal_prob_std
def parse():
### get parameters
parser = ArgumentParser()
# main parameters (required)
parser.add_argument('--exp_suffix', type=str, help='exp suffix')
parser.add_argument('--category', type=str, help='model def file')
parser.add_argument('--train_data_fn', type=str, help='training data file that indexs all data tuples')
parser.add_argument('--val_data_fn', type=str, help='validation data file that indexs all data tuples')
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--num_workers', type=int, default=4)
# main parameters (optional)
parser.add_argument('--device', type=str, default='cuda:0', help='cpu or cuda:x for using cuda on GPU number x')
parser.add_argument('--seed', type=int, default=3124256514,
help='random seed (for reproducibility) [specify -1 means to generate a random one]')
# parser.add_argument('--seed', type=int, default=-1, help='random seed (for reproducibility) [specify -1 means to generate a random one]')
parser.add_argument('--log_dir', type=str, default='logs', help='exp logs directory')
parser.add_argument('--data_dir', type=str, default='./prep_data', help='data directory')
parser.add_argument('--overwrite', action='store_true', default=False,
help='overwrite if exp_dir exists [default: False]')
# network settings
parser.add_argument('--feat_len', type=int, default=256)
parser.add_argument('--max_num_part', type=int, default=20)
parser.add_argument('--sigma', type=float, default=25.0)
# Sampler options
parser.add_argument('--num_steps', type=int, default=500)
parser.add_argument('--snr', type=float, default=0.16)
parser.add_argument('--t0', type=float, default=1.0)
parser.add_argument('--cor_steps', type=int, default=1)
parser.add_argument('--cor_final_steps', type=int, default=1)
parser.add_argument('--noise_decay_pow', type=int, default=1)
# visu
parser.add_argument('--no_visu', action='store_true', default=False, help='no visu? [default: False]')
# data
parser.add_argument('--level', default='3', help='level of dataset')
parser.add_argument('--part_shuffle', action='store_false', default=True, help='shuffle parts?')
#model path
parser.add_argument('--model_dir', type=str, help='the path of the model')
# out dir
parser.add_argument('--out_dir', default='results', type=str, help='the path of the test')
# set parameters for QDS
parser.add_argument('--cdsThresh', type=float, default=0.5)
# repeat times
parser.add_argument("--repeat_times_per_shape", type=int, help='the repeat times for every shape', default=10)
# parse args
conf = parser.parse_args()
conf.exp_name = f'exp-{conf.category}-level{conf.level}-{conf.exp_suffix}'
conf.exp_dir = os.path.join(conf.log_dir, conf.exp_name)
if not os.path.exists(conf.log_dir):
os.mkdir(conf.log_dir)
if os.path.exists(conf.exp_dir):
if not conf.overwrite:
response = input('A testing run named "%s" already exists, overwrite? (y/n) ' % conf.exp_name)
if response != 'y':
exit(1)
shutil.rmtree(conf.exp_dir)
os.mkdir(conf.exp_dir)
# os.mkdir(os.path.join(conf.exp_dir, 'ckpts'))
if not conf.no_visu:
os.mkdir(os.path.join(conf.exp_dir, 'val_visu'))
return conf
def test(conf):
sigma = conf.sigma
print("sigma: ", sigma)
marginal_prob_std_fn = functools.partial(marginal_prob_std, sigma=sigma, conf=conf)
diffusion_coeff_fn = functools.partial(diffusion_coeff, sigma=sigma, conf=conf)
data_features = ['part_pcs', 'part_poses', 'part_valids', 'shape_id', 'part_ids', 'contact_points', 'sym', 'pairs', 'match_ids']
val_dataset = PartNetPartDataset(conf.category, conf.data_dir, conf.val_data_fn, data_features, \
max_num_part=20, level=conf.level)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=conf.batch_size, shuffle=False,
pin_memory=True, \
num_workers=0, drop_last=False,
collate_fn=utils.collate_feats_with_none,
worker_init_fn=utils.worker_init_fn)
network = model_score_based.Network(conf, marginal_prob_std=marginal_prob_std_fn, input_dim=6)
network.load_state_dict(torch.load(conf.model_dir, map_location=conf.device))
# send parameters to device
network.to(conf.device)
val_num_batch = len(val_dataloader)
val_batches = enumerate(val_dataloader, 0)
val_batch_ind = -1
total_acc_num = 0
total_valid_num = 0
total_max_count = 0
total_total_num = 0
sum_real_part_cd_loss = 0.
sum_real_shape_cd_loss = 0.
sum_real_contact_point_loss = 0.
sum_cdsV1_sum = 0.
sum_cdsV2_sum = 0.
real_val_data_set = 0
network.eval()
# validate one batch
while val_batch_ind + 1 < val_num_batch:
val_batch_ind, val_batch = next(val_batches)
if len(val_batch)==0:
continue
#ipdb.set_trace()
with torch.no_grad():
# forward pass (including logging)
acc_num, valid_num, res_count, total_num, real_shape_cd_loss, real_total_cd_loss, \
real_contact_point_loss, real_batch_size, cdsV1_sum, cdsV2_sum \
= forward(batch=val_batch, data_features=data_features, network=network, conf=conf, margin_fn=marginal_prob_std_fn,
diffusion_coeff_fn=diffusion_coeff_fn, is_val=True, batch_ind=val_batch_ind)
total_acc_num += acc_num
total_valid_num += valid_num
total_max_count += res_count
total_total_num += total_num
sum_real_part_cd_loss += real_total_cd_loss
sum_real_shape_cd_loss += real_shape_cd_loss
sum_real_contact_point_loss += real_contact_point_loss
sum_cdsV1_sum += cdsV1_sum
sum_cdsV2_sum += cdsV2_sum
real_val_data_set += real_batch_size
total_max_count = total_max_count.float()
total_total_num = float(total_total_num)
total_acc = total_acc_num / total_valid_num
total_contact = total_max_count / total_total_num
real_total_shape_loss = sum_real_shape_cd_loss / real_val_data_set
real_total_cdsV1 = sum_cdsV1_sum / real_val_data_set
real_total_cdsV2 = sum_cdsV2_sum / real_val_data_set
print('-'*70)
print("Test results:")
print('SCD: ', real_total_shape_loss.item())
print('PA: ',100 * total_acc.item())
print('CA: ', 100 * total_contact.item())
print('QDS: ', real_total_cdsV1.item())
print('WQDS: ', real_total_cdsV2.item())
if __name__ == '__main__':
# parse args
conf = parse()
print("conf", conf)
if conf.seed < 0:
conf.seed = random.randint(1, 10000)
random.seed(conf.seed)
np.random.seed(conf.seed)
torch.manual_seed(conf.seed)
setproctitle.setproctitle("test in " + conf.category)
### start training
test(conf)