You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -24,7 +25,7 @@ The package is documented in the [online manual](https://jgcri.github.io/gcamfao
24
25
25
26
***
26
27
27
-
### Quick Start
28
+
### Quick Start in R (> 4.0) & Rstudio
28
29
29
30
#### 1. Download and install:
30
31
@@ -54,7 +55,7 @@ The package is documented in the [online manual](https://jgcri.github.io/gcamfao
54
55
### Package structure
55
56
56
57
57
-
*`gcamfaostat` processes [input data](https://jgcri.github.io/gcamfaostat/articles/vignette_preparing_data.html#metadata) to output data in a format that is needed for downstream processing and modeling, e.g., [data used in gcamdata-aglu-FAO](https://github.com/JGCRI/gcam-core/tree/master/input/gcamdata/inst/extdata/aglu/FAO) (see the schmatic below).
58
+
*`gcamfaostat` processes [input data](https://jgcri.github.io/gcamfaostat/articles/vignette_preparing_data.html#metadata) to output data in a format that is needed for downstream processing and modeling, e.g., [data used in gcamdata-aglu-FAO](https://github.com/JGCRI/gcam-core/tree/master/input/gcamdata/inst/extdata/aglu/FAO) (see the schematic below).
58
59
* Input data was stored in the [Prebuilt Data](https://github.com/JGCRI/gcamfaostat/blob/main/data/PREBUILT_DATA.rda) of the package. The raw data is archived on Zenodo (see URL in the [`FF_download_RemoteArchive`](https://github.com/JGCRI/gcamfaostat/blob/main/R/xfaostat_helper_funcs.R#L144) function) to ensure the processing is 100% replicable. Users can also download the latest data using [`FF_download_FAOSTAT`](https://github.com/JGCRI/gcamfaostat/blob/main/R/xfaostat_helper_funcs.R#90).
59
60
* All intermediate processing and data flows are transparent and traceable. See [Processing Flow](https://jgcri.github.io/gcamfaostat/articles/vignette_processing_flow.html) for data-tracing examples.
Copy file name to clipboardExpand all lines: vignettes/references.bib
+28Lines changed: 28 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -140,6 +140,16 @@ @article{Zhao2021Estimating
140
140
month=7,
141
141
day=20,
142
142
}
143
+
@article{Zhao2020critical,
144
+
title={The critical role of conversion cost and comparative advantage in modeling agricultural land use change},
145
+
author={Zhao, Xin and Calvin, Katherine V and Wise, Marshall A},
146
+
journal={Climate Change Economics},
147
+
volume={11},
148
+
number={01},
149
+
pages={2050004},
150
+
year={2020},
151
+
publisher={World Scientific}
152
+
}
143
153
@article{Bruckner2019FABIO,
144
154
journal={Environmental Science & Technology},
145
155
doi={10.1021/acs.est.9b03554},
@@ -190,6 +200,15 @@ @article{Chepeliev2022JGEA
190
200
month=6,
191
201
day=25,
192
202
}
203
+
@article{zhao2021role,
204
+
title={The role of global agricultural market integration in multiregional economic modeling: Using hindcast experiments to validate an Armington model},
205
+
author={Zhao, Xin and Calvin, Katherine V and Wise, Marshall A and Iyer, Gokul},
206
+
journal={Economic Analysis and Policy},
207
+
volume={72},
208
+
pages={1--17},
209
+
year={2021},
210
+
publisher={Elsevier}
211
+
}
193
212
@article{Lampe2014AgMIP,
194
213
journal={Agricultural Economics},
195
214
doi={10.1111/agec.12086},
@@ -275,6 +294,15 @@ @article{calvin2019gcam
275
294
publisher={Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States); Pacific~…},
276
295
DOI={10.5194/gmd-12-677-2019}
277
296
}
297
+
@article{bond2019gcamdata,
298
+
title={gcamdata: An R package for preparation, synthesis, and tracking of input data for the GCAM integrated human-earth systems model},
299
+
author={Bond-Lamberty, Ben and Dorheim, Kalyn and Cui, Ryna and Horowitz, Russell and Snyder, Abigail and Calvin, Katherine and Feng, Leyang and Hoesly, Rachel and Horing, Jill and Kyle, G Page and others},
300
+
journal={Journal of Open Research Software},
301
+
volume={7},
302
+
number={1},
303
+
year={2019},
304
+
publisher={Ubiquity Press}
305
+
}
278
306
@article{divittorio2020moirai,
279
307
title={Moirai Version 3: A Data Processing System to Generate Recent Historical Land Inputs for Global Modeling Applications at Various Scales},
280
308
author={Di Vittorio, Alan and Vernon, Christopher R and Shu, Shijie},
Copy file name to clipboardExpand all lines: vignettes/vignette_getting_started.Rmd
+12-4Lines changed: 12 additions & 4 deletions
Original file line number
Diff line number
Diff line change
@@ -17,18 +17,26 @@ knitr::opts_chunk$set(
17
17
```
18
18
19
19
20
-
#
20
+
## Introduction
21
21
22
+
Global economic and multisector dynamic models have become pivotal tools for investigating complex interactions between human activities and the environment, as evident in recent research [@Doelman2022Quantifying;@Fujimori2022Land-based;@IPCC2022Annex;@Ven2023multimodel]. Agriculture and land use (AgLU) plays a critical role in these models, particularly when used to address key agroeconomics questions [@Graham2023Agricultural;@Yarlagadda2023Trade;@Zhang2023Agriculture;@Zhao2021Global;@Zhao2020critical]. Sound economic modeling hinges significantly upon the accessibility and quality of data [@Bruckner2019FABIO;@Calvin2022GMD;@Chepeliev2022JGEA]. The Food and Agriculture Organization Statistical Database (FAOSTAT) [@FAOSTAT2023FAOSTAT] serves as the most important data source, offering open-access data on country-level agricultural production, land use, trade, food consumption, nutrient content, prices, and more. However, the raw data from FAOSTAT requires cleaning, balancing, and synthesis, involving assumptions such as interpolation and mapping, which can introduce uncertainties. It is noteworthy that each agroeconomic modeling team typically develops its own assumptions and methods to prepare and process FAOSTAT data [@bond2019gcamdata]. While largely overlooked, the uncertainty in the base calibration data likely contributed to the disparities in model outcomes [@Lampe2014AgMIP;@zhao2021role]. Hence, our motivation is to create an open-source tool (`gcamfaostat`) for the preparation, processing, and synthesis of FAOSTAT data for global agroeconomic modeling. The tool can also be valuable to a broader range of users interested in understanding global agriculture trends and dynamics, as it provides accessible and processed data and [visualization](https://jgcri.github.io/gcamfaostat/articles/vignette_visualization.html) functions.
22
23
23
-
# gcamdata and gcamfaostat
24
-
`gcamdata`[@bond_lamberty_2023]
24
+
25
+
## gcamfaostat, gcamdata, GCAM, and the broader modeling community
26
+
27
+
`gcamdata`[@bond_lamberty_2023]
28
+
29
+
Figure 1 shows the relationship between `gcamfaostat` and `gcamdata` with example modules of each packages presented.
30
+
31
+
{width=85%}
25
32
26
33
27
34
28
35
29
36
Figure 1 shows the relationship between `gcamfaostat` and `gcamdata` with example modules of each packages presented.
30
37
31
-

38
+
{width=95%}
39
+
32
40
**Figure 1. Relationship between `gcamfaostat` and `gcamdata`.** Modules with identifier `_xfaostat_` only exists in `gcamfaostat`. Agriculture and land use (AgLU) related modules (`_aglu_`) that rely on outputs from `gcamfaostat` can run in both packages. Other `gcamdata` modules processing data in areas such as energy, emissions, water, and socioeconomics only exist in `gcamdata`.
0 commit comments