diff --git a/docs/articles/vignette_getting_started.html b/docs/articles/vignette_getting_started.html index d8339072..972fc50a 100644 --- a/docs/articles/vignette_getting_started.html +++ b/docs/articles/vignette_getting_started.html @@ -112,7 +112,7 @@
vignettes/vignette_getting_started.Rmd
vignette_getting_started.Rmd
vignettes/vignette_news.Rmd
vignette_news.Rmd
vignettes/vignette_preparing_data.Rmd
vignette_preparing_data.Rmd
vignettes/vignette_processing_flow.Rmd
vignette_processing_flow.Rmd
vignettes/vignette_use_cases.Rmd
vignette_use_cases.Rmd
vignettes/vignette_visualization.Rmd
vignette_visualization.Rmd
Zhao X, Chepeliev M, Patel P, Wise M, Calvin K, Narayan K, Vernon C (2023). +
Zhao X, Chepeliev M, Patel P, Wise M, Calvin K, Narayan K, Vernon C (2024). gcamfaostat: Prepare, process, and synthesize FAOSTAT data for global agroeconomic and multisector dynamic modeling. R package version 1.0.0, https://jgcri.github.io/gcamfaostat.
@Manual{, title = {gcamfaostat: Prepare, process, and synthesize FAOSTAT data for global agroeconomic and multisector dynamic modeling}, author = {Xin Zhao and Maksym Chepeliev and Pralit Patel and Marshall Wise and Kate Calvin and Kanishka Narayan and Chris Vernon}, - year = {2023}, + year = {2024}, note = {R package version 1.0.0}, url = {https://jgcri.github.io/gcamfaostat}, }diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 697c7a93..31506194 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -8,7 +8,7 @@ articles: vignette_processing_flow: vignette_processing_flow.html vignette_use_cases: vignette_use_cases.html vignette_visualization: vignette_visualization.html -last_built: 2023-11-11T03:08Z +last_built: 2024-02-12T14:18Z urls: reference: https://jgcri.github.io/gcamfaostat/reference article: https://jgcri.github.io/gcamfaostat/articles diff --git a/docs/reference/FAOSTAT_metadata.html b/docs/reference/FAOSTAT_metadata.html index cd97ce14..30f90b13 100644 --- a/docs/reference/FAOSTAT_metadata.html +++ b/docs/reference/FAOSTAT_metadata.html @@ -126,7 +126,7 @@
The dplyr join functions are a little on the slow side for very large
tables. This version converts its inputs
-data.table
structures, and uses that package's
+data.table
structures, and uses that package's
faster indexing capabilities to do a faster join.