-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
202 lines (165 loc) · 8.04 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
# @Time : 2023/3/4 9:14
# @Author : Lin Junhong
# @FileName: test.py
# @Software: PyCharm
# @E_mails :SPJLinn@163.com
import argparse
import os
import time
import PIL.Image
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from skimage import img_as_ubyte
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
from skimage.metrics import structural_similarity as ssim_loss
from torch.utils.data import DataLoader
from tqdm import tqdm
import utils as UT
from models.LDRM import LDRM as Network
# ======================================================================================================================
weights_dir = './checkpoints/Real.pth'
data_dir = './testset/Real/'
result_dir = './results/Real/'
if os.path.isfile(data_dir):
Scenario = 'single'
elif os.path.isfile(data_dir + os.listdir(data_dir)[0]):
Scenario = 'real'
else:
Scenario = 'synth'
data_dir_str = data_dir.split('/')[2:-1]
data_dir_str = '/'.join(data_dir_str)
# resul_dir = result_dir + data_dir_str
parser = argparse.ArgumentParser(description='Low-light Imaging via Color-Monochrome Cameras')
parser.add_argument('--input_dir', default=data_dir, type=str, help='Directory of validation images')
parser.add_argument('--result_dir', default=result_dir, type=str, help='Directory for results')
parser.add_argument('--weights_dir', default=weights_dir, type=str, help='Path to weights')
parser.add_argument('--scenario', default=Scenario, type=str, help='Different test Scenario')
parser.add_argument('--gpus', default='0', type=str, help='CUDA_VISIBLE_DEVICES')
parser.add_argument('--device', default='cpu', type=str, help='cuda or cpu')
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
# ======================================================================================================================
class TEST:
def __init__(self, weights_dir):
self.model = Network().to(args.device)
UT.NET.load_checkpoint(self.model, weights_dir, strict=True)
self.model.eval()
# self.model = nn.DataParallel(self.model)
# macs, params = get_model_complexity_info(model, (3, 256, 256), as_strings=True,
# print_per_layer_stat=False, verbose=True)
result_dir = os.path.join(args.result_dir)
os.makedirs(result_dir, exist_ok=True)
print('====> Scenario: ', Scenario)
# print(f'====> Params: {params} Macs: {macs}')
print(f'====> Testing weights: {weights_dir}')
print('====> Save Dir: ', result_dir)
def single_img(self, data_dir, result_dir):
img_name = data_dir.split('/')[-1].split('.')[0]
color_img = Image.open(data_dir)
mono_img = Image.open('./testset/Mono.jpg')
color_img = TF.to_tensor(color_img)
mono_img = TF.to_tensor(mono_img)
H = color_img.shape[-2]
W = color_img.shape[-1]
if H % 32 != 0:
new_H = H // 32 * 32
else:
new_H = H
if W % 32 != 0:
new_W = W // 32 * 32
else:
new_W = W
with torch.no_grad():
color_img = torch.unsqueeze(color_img, 0).to(args.device)
mono_img = torch.unsqueeze(mono_img, 0).to(args.device)
start_time = time.time()
restored_img = self.model(color_img, mono_img)
end_time = time.time()
pred_time = end_time - start_time
restored_img = TF.resize(restored_img[0], (new_H, new_W))
restored_img = torch.clamp(restored_img, 0, 1).permute(1, 2, 0).cpu().detach().numpy()
UT.save_img((os.path.join(result_dir, img_name + '_Restored.png')), img_as_ubyte(restored_img))
print(f"One Img Time: {pred_time}")
def norefer(self, data_dir, result_dir):
test_dataset = UT.DataLoaderTest(data_dir, ColorSet='Color')
test_loader = DataLoader(dataset=test_dataset, batch_size=1,
shuffle=False, num_workers=0, drop_last=False, pin_memory=True)
print('Img Number: ', len(test_loader))
with torch.no_grad():
time_count = 0
pbar = tqdm(enumerate(test_loader))
for ii, data in pbar:
torch.cuda.ipc_collect()
torch.cuda.empty_cache()
color = data[0].to(args.device)
mono = data[1].to(args.device)
start_time = time.time()
restored = self.model(color, mono)
end_time = time.time()
pred_time = end_time - start_time
filenames = data[2]
H, W = int(data[3][0]), int(data[4][0])
restored = TF.resize(restored, (H, W), interpolation=PIL.Image.BICUBIC)
restored = torch.clamp(restored, 0, 1).permute(0, 2, 3, 1).cpu().detach().numpy()
time_count += pred_time
for batch in range(len(restored)):
UT.save_img((os.path.join(result_dir, f'{filenames[batch]}_Restored.png')), img_as_ubyte(restored[batch]))
info = f'One Img Time:{pred_time:.4f} Total Processing Time:{time_count:.4f} '
pbar.set_description(info)
img_per_sec = time_count / (len(test_loader))
print(f"Avg One Img Time: {img_per_sec}")
def refer(self, data_dir, result_dir):
# img_options={'patch_size': 256}
val_dataset = UT.DataLoaderVal(data_dir, patch_size=None,
Scale=1, ColorSet='Color/')
val_loader = DataLoader(dataset=val_dataset, batch_size=1,
shuffle=False, num_workers=0, drop_last=False, pin_memory=True)
print('Img Number: ', len(val_loader) * 1)
with torch.no_grad():
psnr_val_rgb = []
ssim_val_rgb = []
time_count = 0
PSNRS = 0
SSIMS = 0
pbar = tqdm(enumerate(val_loader))
for ii, data in pbar:
color = data[0].to(args.device)
mono = data[1].to(args.device)
gt = data[2].to(args.device)
filenames = data[3]
H, W = int(data[4][0]), int(data[5][0])
start_time = time.time()
restored = self.model(color, mono)
end_time = time.time()
pred_time = end_time - start_time
restored = TF.resize(restored, (H, W), interpolation=PIL.Image.BICUBIC)
restored = torch.clamp(restored, 0, 1).cpu().detach().numpy().squeeze().transpose(1, 2, 0)
gt = torch.clamp(gt, 0, 1).cpu().detach().numpy().squeeze().transpose(1, 2, 0)
time_count = time_count + pred_time
# for batch in range(len(clean)):
psnr = psnr_loss(restored, gt)
# ssim = ssim_loss(restored, gt, win_size=3, multichannel=True)
PSNRS += psnr
# SSIMS += ssim
psnr_val_rgb.append(psnr)
# ssim_val_rgb.append(ssim)
# print(restored.shape)
UT.save_img((os.path.join(result_dir, filenames[0] + '_Restored.png')), img_as_ubyte(restored))
info = f'One Batch Time:{pred_time:.4f} Image:{H, W} PSNR:{psnr:.4f}' \
f'Total Processing Time:{time_count:.4f} '
pbar.set_description(info)
# print(f'Avg PSNR: {PSNRS/len(val_loader)} SSIM: {SSIMS/len(val_loader)}')
img_per_sec = time_count / (len(val_loader) * 1)
psnr_val_rgb = sum(psnr_val_rgb) / (len(val_loader) * 1)
# ssim_val_rgb = sum(ssim_val_rgb) / (len(val_loader) * 1)
print(f"Avg One Img Time: {img_per_sec} \nPSNR: {psnr_val_rgb} SSIM: {ssim_val_rgb}")
# ======================================================================================================================
if __name__ == '__main__':
T = TEST(weights_dir=weights_dir)
T.refer(data_dir, result_dir)