-
Notifications
You must be signed in to change notification settings - Fork 7
/
learnGeodesicBDModel.py
263 lines (239 loc) · 9.42 KB
/
learnGeodesicBDModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# -*- coding: utf-8 -*-
"""
Geodesic Bin and Delta model for the axis-angle representation
"""
import torch
from torch import nn, optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from dataGenerators import TestImages, my_collate
from binDeltaGenerators import GBDGenerator
from axisAngle import get_error2, geodesic_loss
from binDeltaModels import OneBinDeltaModel, OneDeltaPerBinModel
from helperFunctions import classes
import numpy as np
import math
import scipy.io as spio
import gc
import os
import time
import progressbar
import pickle
import argparse
from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser(description='Geodesic Bin & Delta Model')
parser.add_argument('--gpu_id', type=str, default='0')
parser.add_argument('--render_path', type=str, default='data/renderforcnn/')
parser.add_argument('--augmented_path', type=str, default='data/augmented2/')
parser.add_argument('--pascal3d_path', type=str, default='data/flipped_new/test/')
parser.add_argument('--save_str', type=str)
parser.add_argument('--dict_size', type=int, default=200)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--feature_network', type=str, default='resnet')
parser.add_argument('--N0', type=int, default=2048)
parser.add_argument('--N1', type=int, default=1000)
parser.add_argument('--N2', type=int, default=500)
parser.add_argument('--N3', type=int, default=100)
parser.add_argument('--init_lr', type=float, default=1e-4)
parser.add_argument('--num_epochs', type=int, default=3)
parser.add_argument('--max_iterations', type=float, default=np.inf)
parser.add_argument('--multires', type=bool, default=False)
args = parser.parse_args()
print(args)
# assign GPU
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
# save stuff here
results_file = os.path.join('results', args.save_str)
model_file = os.path.join('models', args.save_str + '.tar')
plots_file = os.path.join('plots', args.save_str)
log_dir = os.path.join('logs', args.save_str)
# kmeans data
kmeans_file = 'data/kmeans_dictionary_axis_angle_' + str(args.dict_size) + '.pkl'
kmeans = pickle.load(open(kmeans_file, 'rb'))
kmeans_dict = kmeans.cluster_centers_
cluster_centers_ = Variable(torch.from_numpy(kmeans_dict).float()).cuda()
num_clusters = kmeans.n_clusters
# relevant variables
ndim = 3
num_classes = len(classes)
# loss
mse_loss = nn.MSELoss().cuda()
ce_loss = nn.CrossEntropyLoss().cuda()
gve_loss = geodesic_loss().cuda()
# DATA
# datasets
real_data = GBDGenerator(args.augmented_path, 'real', kmeans_file)
render_data = GBDGenerator(args.render_path, 'render', kmeans_file)
test_data = TestImages(args.pascal3d_path)
# setup data loaders
real_loader = DataLoader(real_data, batch_size=args.num_workers, shuffle=True, num_workers=args.num_workers, pin_memory=True, collate_fn=my_collate)
render_loader = DataLoader(render_data, batch_size=args.num_workers, shuffle=True, num_workers=args.num_workers, pin_memory=True, collate_fn=my_collate)
test_loader = DataLoader(test_data, batch_size=32)
print('Real: {0} \t Render: {1} \t Test: {2}'.format(len(real_loader), len(render_loader), len(test_loader)))
if np.isinf(args.max_iterations):
max_iterations = min(len(real_loader), len(render_loader))
else:
max_iterations = args.max_iterations
# my_model
if not args.multires:
model = OneBinDeltaModel(args.feature_network, num_classes, num_clusters, args.N0, args.N1, args.N2, ndim)
else:
model = OneDeltaPerBinModel(args.feature_network, num_classes, num_clusters, args.N0, args.N1, args.N2, args.N3, ndim)
# print(model)
# loss and optimizer
optimizer = optim.Adam(model.parameters(), lr=args.init_lr)
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
# store stuff
writer = SummaryWriter(log_dir)
count = 0
val_loss = []
s = 0
# OPTIMIZATION functions
def training_init():
global count, val_loss, s
model.train()
bar = progressbar.ProgressBar(max_value=max_iterations)
for i, (sample_real, sample_render) in enumerate(zip(real_loader, render_loader)):
# forward steps
# outputs
xdata_real = Variable(sample_real['xdata'].cuda())
label_real = Variable(sample_real['label'].cuda())
ydata_real = [Variable(sample_real['ydata_bin'].cuda()), Variable(sample_real['ydata_res'].cuda())]
output_real = model(xdata_real, label_real)
xdata_render = Variable(sample_render['xdata'].cuda())
label_render = Variable(sample_render['label'].cuda())
ydata_render = [Variable(sample_render['ydata_bin'].cuda()), Variable(sample_render['ydata_res'].cuda())]
output_render = model(xdata_render, label_render)
# loss
ydata_bin = torch.cat((ydata_real[0], ydata_render[0]))
ydata_res = torch.cat((ydata_real[1], ydata_render[1]))
output_bin = torch.cat((output_real[0], output_render[0]))
output_res = torch.cat((output_real[1], output_render[1]))
Lc = ce_loss(output_bin, ydata_bin)
Lr = mse_loss(output_res, ydata_res)
loss = Lc + 0.5*math.exp(-2*s)*Lr + s
# parameter updates
optimizer.zero_grad()
loss.backward()
optimizer.step()
s = 0.5*math.log(Lr)
# store
count += 1
writer.add_scalar('train_loss', loss.item(), count)
writer.add_scalar('alpha', 0.5*math.exp(-2*s), count)
if i % 1000 == 0:
ytest, yhat_test, test_labels = testing()
spio.savemat(results_file, {'ytest': ytest, 'yhat_test': yhat_test, 'test_labels': test_labels})
tmp_val_loss = get_error2(ytest, yhat_test, test_labels, num_classes)
writer.add_scalar('val_loss', tmp_val_loss, count)
val_loss.append(tmp_val_loss)
# cleanup
del xdata_real, xdata_render, label_real, label_render, ydata_real, ydata_render
del ydata_bin, ydata_res, output_bin, output_res
del output_real, output_render, loss, sample_real, sample_render
bar.update(i)
# stop
if i == max_iterations:
break
render_loader.dataset.shuffle_images()
real_loader.dataset.shuffle_images()
def training():
global count, val_loss, s
model.train()
bar = progressbar.ProgressBar(max_value=max_iterations)
for i, (sample_real, sample_render) in enumerate(zip(real_loader, render_loader)):
# forward steps
# output
xdata_real = Variable(sample_real['xdata'].cuda())
label_real = Variable(sample_real['label'].cuda())
ydata_real = [Variable(sample_real['ydata_bin'].cuda()), Variable(sample_real['ydata'].cuda())]
output_real = model(xdata_real, label_real)
xdata_render = Variable(sample_render['xdata'].cuda())
label_render = Variable(sample_render['label'].cuda())
ydata_render = [Variable(sample_render['ydata_bin'].cuda()), Variable(sample_render['ydata'].cuda())]
output_render = model(xdata_render, label_render)
# loss
ydata_bin = torch.cat((ydata_real[0], ydata_render[0]))
ydata = torch.cat((ydata_real[1], ydata_render[1]))
output_bin = torch.cat((output_real[0], output_render[0]))
_, ind = torch.max(output_bin, dim=1)
y = torch.index_select(cluster_centers_, 0, ind)
output = y + torch.cat((output_real[1], output_render[1]))
Lc = ce_loss(output_bin, ydata_bin)
Lr = gve_loss(output, ydata)
loss = Lc + math.exp(-s)*Lr + s
# parameter updates
optimizer.zero_grad()
loss.backward()
optimizer.step()
s = math.log(Lr)
# store
count += 1
writer.add_scalar('train_loss', loss.item(), count)
writer.add_scalar('alpha', math.exp(-s), count)
if i % 1000 == 0:
ytest, yhat_test, test_labels = testing()
spio.savemat(results_file, {'ytest': ytest, 'yhat_test': yhat_test, 'test_labels': test_labels})
tmp_val_loss = get_error2(ytest, yhat_test, test_labels, num_classes)
writer.add_scalar('val_loss', tmp_val_loss, count)
val_loss.append(tmp_val_loss)
# cleanup
del xdata_real, xdata_render, label_real, label_render, ydata_real, ydata_render
del ydata_bin, ydata, output_bin, output
del output_real, output_render, sample_real, sample_render, loss
bar.update(i)
# stop
if i == max_iterations:
break
render_loader.dataset.shuffle_images()
real_loader.dataset.shuffle_images()
def testing():
model.eval()
ypred = []
ytrue = []
labels = []
for i, sample in enumerate(test_loader):
xdata = Variable(sample['xdata'].cuda())
label = Variable(sample['label'].cuda())
output = model(xdata, label)
ypred_bin = np.argmax(output[0].data.cpu().numpy(), axis=1)
ypred_res = output[1].data.cpu().numpy()
ypred.append(kmeans_dict[ypred_bin, :] + ypred_res)
ytrue.append(sample['ydata'].numpy())
labels.append(sample['label'].numpy())
del xdata, label, output, sample
gc.collect()
ypred = np.concatenate(ypred)
ytrue = np.concatenate(ytrue)
labels = np.concatenate(labels)
model.train()
return ytrue, ypred, labels
def save_checkpoint(filename):
torch.save(model.state_dict(), filename)
# initialization
training_init()
ytest, yhat_test, test_labels = testing()
print('\nMedErr: {0}'.format(get_error2(ytest, yhat_test, test_labels, num_classes)))
s = 0 # reset
for epoch in range(args.num_epochs):
tic = time.time()
# scheduler.step()
# training step
training()
# save model at end of epoch
save_checkpoint(model_file)
# validation
ytest, yhat_test, test_labels = testing()
print('\nMedErr: {0}'.format(get_error2(ytest, yhat_test, test_labels, num_classes)))
# time and output
toc = time.time() - tic
print('Epoch: {0} done in time {1}s'.format(epoch, toc))
# cleanup
gc.collect()
writer.close()
val_loss = np.stack(val_loss)
spio.savemat(plots_file, {'val_loss': val_loss})
# evaluate the model
ytest, yhat_test, test_labels = testing()
print('\nMedErr: {0}'.format(get_error2(ytest, yhat_test, test_labels, num_classes)))
spio.savemat(results_file, {'ytest': ytest, 'yhat_test': yhat_test, 'test_labels': test_labels})