Skip to content

Latest commit

 

History

History
317 lines (244 loc) · 9.56 KB

1143.最长公共子序列.md

File metadata and controls

317 lines (244 loc) · 9.56 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

1143.最长公共子序列

力扣题目链接

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

输入:text1 = "abcde", text2 = "ace" 输出:3 解释:最长公共子序列是 "ace",它的长度为 3。

示例 2: 输入:text1 = "abc", text2 = "abc" 输出:3 解释:最长公共子序列是 "abc",它的长度为 3。

示例 3: 输入:text1 = "abc", text2 = "def" 输出:0 解释:两个字符串没有公共子序列,返回 0。

提示:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000 输入的字符串只含有小写英文字符。

思路

本题和动态规划:718. 最长重复子数组区别在于这里不要求是连续的了,但要有相对顺序,即:"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

继续动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?

这样定义是为了后面代码实现方便,如果非要定义为长度为[0, i]的字符串text1也可以,我在 动态规划:718. 最长重复子数组 中的「拓展」里 详细讲解了区别所在,其实就是简化了dp数组第一行和第一列的初始化逻辑。

  1. 确定递推公式

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

代码如下:

if (text1[i - 1] == text2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
  1. dp数组如何初始化

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

代码:

vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
  1. 确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:

1143.最长公共子序列

那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。

  1. 举例推导dp数组

以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:

1143.最长公共子序列1

最后红框dp[text1.size()][text2.size()]为最终结果

以上分析完毕,C++代码如下:

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};
  • 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
  • 空间复杂度: O(n * m)

其他语言版本

Java:

/*
	二维dp数组
*/
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int[][] dp = new int[text1.length() + 1][text2.length() + 1]; // 先对dp数组做初始化操作
        for (int i = 1 ; i <= text1.length() ; i++) {
            char char1 = text1.charAt(i - 1);
            for (int j = 1; j <= text2.length(); j++) {
                char char2 = text2.charAt(j - 1);
                if (char1 == char2) { // 开始列出状态转移方程
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.length()][text2.length()];
    }
}



/**
	一维dp数组
*/
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int n1 = text1.length();
        int n2 = text2.length();

        // 多从二维dp数组过程分析  
        // 关键在于  如果记录  dp[i - 1][j - 1]
        // 因为 dp[i - 1][j - 1]  <!=>  dp[j - 1]  <=>  dp[i][j - 1]
        int [] dp = new int[n2 + 1];

        for(int i = 1; i <= n1; i++){

            // 这里pre相当于 dp[i - 1][j - 1]
            int pre = dp[0];
            for(int j = 1; j <= n2; j++){

                //用于给pre赋值
                int cur = dp[j];
                if(text1.charAt(i - 1) == text2.charAt(j - 1)){
                    //这里pre相当于dp[i - 1][j - 1]   千万不能用dp[j - 1] !!
                    dp[j] = pre + 1;
                } else{
                    // dp[j]     相当于   dp[i - 1][j]
                    // dp[j - 1] 相当于   dp[i][j - 1]
                    dp[j] = Math.max(dp[j], dp[j - 1]);
                }

                //更新dp[i - 1][j - 1], 为下次使用做准备
                pre = cur;
            }
        }

        return dp[n2];
    }
}

Python:

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        len1, len2 = len(text1)+1, len(text2)+1
        dp = [[0 for _ in range(len1)] for _ in range(len2)] # 先对dp数组做初始化操作
        for i in range(1, len2):
            for j in range(1, len1): # 开始列出状态转移方程
                if text1[j-1] == text2[i-1]:
                    dp[i][j] = dp[i-1][j-1]+1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        return dp[-1][-1]

Go:

func longestCommonSubsequence(text1 string, text2 string) int {
	t1 := len(text1)
	t2 := len(text2)
	dp:=make([][]int,t1+1)
	for i:=range dp{
		dp[i]=make([]int,t2+1)
	}

	for i := 1; i <= t1; i++ {
		for j := 1; j <=t2; j++ {
			if text1[i-1]==text2[j-1]{
				dp[i][j]=dp[i-1][j-1]+1
			}else{
				dp[i][j]=max(dp[i-1][j],dp[i][j-1])
			}
		}
	}
	return dp[t1][t2]
}

func max(a,b int)int  {
	if a>b{
		return a
	}
	return b
}

Javascript:

const longestCommonSubsequence = (text1, text2) => {
    let dp = Array.from(Array(text1.length+1), () => Array(text2.length+1).fill(0));

    for(let i = 1; i <= text1.length; i++) {
        for(let j = 1; j <= text2.length; j++) {
            if(text1[i-1] === text2[j-1]) {
                dp[i][j] = dp[i-1][j-1] +1;;
            } else {
                dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1])
            }
        }
    }

    return dp[text1.length][text2.length];
};

TypeScript:

function longestCommonSubsequence(text1: string, text2: string): number {
    /**
        dp[i][j]: text1中前i-1个和text2中前j-1个,最长公共子序列的长度
     */
    const length1: number = text1.length,
        length2: number = text2.length;
    const dp: number[][] = new Array(length1 + 1).fill(0)
        .map(_ => new Array(length2 + 1).fill(0));
    for (let i = 1; i <= length1; i++) {
        for (let j = 1; j <= length2; j++) {
            if (text1[i - 1] === text2[j - 1]) {
                dp[i][j] = dp[i - 1][j - 1] + 1;
            } else {
                dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
            }
        }
    }
    return dp[length1][length2];
};

Rust:

pub fn longest_common_subsequence(text1: String, text2: String) -> i32 {
    let (n, m) = (text1.len(), text2.len());
    let (s1, s2) = (text1.as_bytes(), text2.as_bytes());
    let mut dp = vec![0; m + 1];
    let mut last = vec![0; m + 1];
    for i in 1..=n {
        dp.swap_with_slice(&mut last);
        for j in 1..=m {
            dp[j] = if s1[i - 1] == s2[j - 1] {
                last[j - 1] + 1
            } else {
                last[j].max(dp[j - 1])
            };
        }
    }
    dp[m]
}