forked from arnodelorme/mffmatlabio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mff_import.m
386 lines (349 loc) · 14 KB
/
mff_import.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
% mff_import - import MFF file to EEGLAB structure. This function calls
% all other function to import MFF xml files, including
% events, channels and channel coordinates.
%
% Usage:
% EEG = mff_import(mffFile);
%
% Input:
% mffFile - filename/foldername for the MFF file (MFF file/folder must
% already exist)
% Output:
% EEG - EEGLAB structure
% data - channels x sample data
% events - events
% chanlocs - channel locations
% mff - misceleneous event information
%
% Note: This function imports the "code" MFF event information into the
% EEGLAB type field. If you want to use other MFF event information
% extract epoch, use the pop_importmff function.
% This is the list of known types
% kMFF_RT_Unknown
% kMFF_RT_Any
% kMFF_RT_MFFFile
% kMFF_RT_Signal
% kMFF_RT_EventTrack
% kMFF_RT_Epochs
% kMFF_RT_Subject
% kMFF_RT_History
% kMFF_RT_Info
% kMFF_RT_InfoN
% kMFF_RT_Categories
% kMFF_RT_JTFCategories
% kMFF_RT_SensorLayout
% kMFF_RT_Coordinates
% kMFF_RT_Photogrammetry^
% kMFF_RT_PNSSet
% kMFF_RT_MovieSyncs
% kMFF_RT_Fields
% kMFF_RT_Notes
% kMFF_RT_Montage
% kMFF_RT_DipoleSet
% kMFF_RT_PhoticStim
% kMFF_RT_GTENModulationConfiguratonFile
% kMFF_RT_GeometryEGIG
% kMFF_RT_AnatomyEGIA
% This file is part of mffmatlabio.
%
% mffmatlabio is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% mffmatlabio is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with mffmatlabio. If not, see <https://www.gnu.org/licenses/>.
function [EEG, data, events, chanlocs, mff] = mff_import(mffFile)
%matVer = ver('MATLAB');
%if datenum(matVer.Date) < 735595 % Matlab 2014a
% error('This version of Matlab is too old. Use version 2014a or later');
%end
if nargin < 1
help mff_import;
return;
end
% add full path if possible
mffPath = fileparts(mffFile);
if isempty(mffPath)
mffFile = fullfile(pwd, mffFile);
elseif exist(fullfile(pwd, mffFile))
mffFile = fullfile(pwd, mffFile);
end
% import data
[floatData, allDataSize, srate, nchans] = mff_importsignal(mffFile);
% aggregate all blocks
npns = nchans(2);
nChannels = size(floatData{1}, 1);
blockSamples = cellfun(@(x)size(x,2), floatData);
if ~isequal(allDataSize/nChannels/4, blockSamples) && ...
~isequal(allDataSize/(nChannels+1)/4, blockSamples) % sometimes an empty PNS channel is removed
error('Block sample size problem');
end
blockSamples = [0 cumsum(blockSamples)];
floatData = [ floatData{:} ];
if exist('eeg_emptyset.m', 'file')
EEG = eeg_emptyset;
else
EEG = [];
end
[~, EEG.setname] = fileparts(mffFile);
EEG.nbchan = double(nChannels);
EEG.data = floatData;
EEG.trials = 1;
EEG.srate = double(srate(1));
EEG.pnts = size(EEG.data,2);
EEG.xmin = 0;
EEG.xmax = 1;
if exist('eeg_checkset.m', 'file') && exist('eeglab_options.m', 'file')
EEG = eeg_checkset(EEG);
end
% scale signal with calibration values if necessary
disp('Make sure you to use the MFF ressource path name not the relative path (crash often related to that issue) ******');
info1 = mff_importinfon(mffFile, 1);
info2 = mff_importinfon(mffFile, 2);
if isfield(info1, 'calibration')
disp('Calibrating data...');
for iChan = 1:length(info1.calibration)
floatData(iChan,:,:) = floatData(iChan,:,:)*info1.calibration(iChan);
end
end
if isfield(info2, 'calibration')
disp('Calibrating data...');
for iChan = 1:length(info2.calibration)
floatData(end-length(info2.calibration)+iChan,:,:) = floatData(end-length(info2.calibration)+iChan,:,:)*info2.calibration(iChan);
end
end
info1.calibration = [];
info2.calibration = [];
EEG.etc.info1 = info1;
if ~isempty(info2) && length(fieldnames(info2)) > 1
EEG.etc.info2 = info2; % more than just calibration
end
% import info file
info = mff_importinfo(mffFile);
layout = mff_importsensorlayout(mffFile);
subject = mff_importsubject(mffFile);
begtime = info.recordtimematlab;
EEG.etc.timezone = info.timezone;
EEG.etc.mffversion = info.version;
EEG.etc.layout = layout;
EEG.etc.subject = subject;
if ~isempty(subject)
subjectFields = { subject.fields.name };
ind = strmatch('localIdentifier', subjectFields, 'exact');
if ~isempty(ind)
EEG.subject = subject.fields(ind).data;
end
end
% import coordinate layout
[EEG.chanlocs, EEG.ref] = mff_importcoordinates(mffFile);
if iscell(EEG.ref)
EEG.ref = sprintf('%s ', EEG.ref{:});
end
EEG.urchanlocs = EEG.chanlocs;
pnschans = mff_importpnsset(mffFile);
if length(pnschans) ~= npns && ~(length(pnschans) == size(EEG.data,1) && isempty(EEG.chanlocs))
if length(pnschans) == npns+1
% last PNS status channel missing because blank and removed by mff_importsignal
pnschans(end) = [];
else
error('Number of PNS raw data channels is not equal to number of PNS channels');
end
end
if ~isempty(EEG.chanlocs)
if exist('eeg_checkchanlocs.m', 'file')
EEG = eeg_checkchanlocs(EEG); % put fiducials in chanfinfo
nChannels = length(EEG.chanlocs);
end
end
if ~isempty(pnschans)
if isempty(EEG.chanlocs) && length(pnschans) == size(EEG.data,1)
% Only PNS channels
EEG.chanlocs = pnschans;
else
if isempty(EEG.chanlocs)
for iChan = 1:nChannels
EEG.chanlocs(end+1).labels = [ 'E' num2str(iChan) ];
EEG.chanlocs(end ).type = 'EEG';
end
end
for iChan = 1:npns
EEG.chanlocs(end+1).labels = pnschans(iChan).labels;
EEG.chanlocs(end ).type = pnschans(iChan).type;
end
end
end
if exist('pop_chanedit', 'file')
EEG=pop_chanedit(EEG, 'forcelocs',[],'nosedir','+Y');
else
EEG.chaninfo.nosedir = '+Y';
end
EEG.etc.recordingtime = begtime;
% import events
[EEG.event, newtimezone] = mff_importevents(mffFile, begtime, EEG.srate);
if ~isequal(EEG.etc.timezone, newtimezone) && ~isempty(newtimezone)
error('Time zone issue');
end
%mff_exportevents(EEG.event, 'test', EEG.etc.recordingtime, EEG.etc.timezone, EEG.srate);
% import continuous or epoch data
cont = mff_importepochs(mffFile, info.version);
% import continuous or epoch data
cat = mff_importcategories(mffFile, info.version);
% calculate epoch length
allEpochLen = [ [cont.endtime] - [cont.begintime] ];
if length(unique(allEpochLen)) > 1
fprintf([ 'IMPORTANT Warning: cannot import trials of different length\n' ...
' importing as segmented data (trial/category info will be lost)\n' ] );
cat = [];
end
if ~isempty(cat)
if sum(cellfun(@length, { cat.trials })) ~= length(cont)
error('The number of "segments" do not match the number of epochs');
end
% check time consistency
iTrial = ones(1, length(cat));
epochLen = cont(1).endtime-cont(1).begintime;
EEG.xmin = -(cat(1).trials(1).eventbegin-cat(1).trials(1).begintime)/1000000;
epochDiffLat = cell(1, length(cat));
EEG.pnts = round(epochLen/1000000*EEG.srate);
lastOriEventIndex = length(EEG.event);
% recorting categories
catCont = [];
for iCat = 1:length(cat)
catContTmp = cat(iCat).trials;
[catContTmp.name] = deal(cat(iCat).name);
try
catCont = [ catCont catContTmp ];
catch
fieldsTmp = fieldnames(catContTmp);
for iCount = 1:length(catContTmp)
for iField = 1:length(fieldsTmp)
catCont(end+1).(fieldsTmp{iField}) = catContTmp(iCount).(fieldsTmp{iField});
end
end
end
end
[tmp, indices] = sort([catCont.begintime]);
catCont = catCont(indices);
for iBound = 1:length(cont) % do not add first event
if catCont(iBound).begintime ~= cont(iBound).begintime
fprintf('Warning: categornies and epoch information does not match for epoch\n', iBound);
end
% there is a natural jitter of a few millisecond for each time-locking
% event within the uncertainty of the EEG sampling rate
% epochDiffLat{iCat}(end+1) = cat(iCat).trials(iTrial(iCat)-1).eventbegin-cat(iCat).trials(iTrial(iCat)-1).begintime;
if catCont(iBound).eventbegin-catCont(iBound).begintime ~= EEG.xmin
% disp('Time locking event offset');
end
% check latency and block consistency
sampleCalculated = (cont(iBound).begintime/1000000)*EEG.srate;
sampleBlock = blockSamples(cont(iBound).firstblock); % this assumes block of size 1
if abs(sampleCalculated-sampleBlock) > 1e-10
fprintf('Warning: segment discontinuity (%d samples missing - pause in the recording or bug?)\n', iBound, sampleCalculated-sampleBlock);
end
% adding new fields to event structure
trial = catCont(iBound);
EEG.event(end+1).type = trial.name;
EEG.event(end).latency = -EEG.xmin*EEG.srate+1+EEG.pnts*(iBound-1);
EEG.event(end).duration = (trial.eventend-trial.eventbegin)/1000000*EEG.srate; % this is sometimes off by 1e-13
EEG.event(end).epoch = iBound;
% copy other fields
trialFields = setdiff(fields(trial), { 'name', 'begintime', 'endtime', 'eventbegin', 'eventend' });
for iField = 1:length(trialFields)
EEG.event(end).(trialFields{iField}) = trial.(trialFields{iField});
end
cont(iBound).samplebeg = cont(iBound).begintime/1000000*EEG.srate;
cont(iBound).sampleend = cont(iBound).endtime/1000000*EEG.srate;
cont(iBound).samplelen = cont(iBound).sampleend - cont(iBound).samplebeg;
%EEG.event(end).latency = (trial.eventbegin)/1000000*EEG.srate; % this is sometimes off by 1e-13
%EEG.event(end).duration = (trial.eventend-trial.eventbegin)/1000000*EEG.srate; % this is sometimes off by 1e-13
end
% adjust event latencies in case of gaps between segments
if any([cont(2:end).begintime] - [cont(1:end-1).endtime])
for iEvent = 1:lastOriEventIndex
% find closest sample
inds = find( EEG.event(iEvent).latency > [cont.samplebeg]);
if length(inds) > 1
correction = (cont(inds(end)).samplebeg - sum([cont(1:inds(end)-1).samplelen]));
if correction
EEG.event(iEvent).latency = EEG.event(iEvent).latency - correction;
end
end
end
end
%% scan events and assign epoch
for iEvent = 1:length(EEG.event)
newepoch = floor((EEG.event(iEvent).latency+0.000001)/EEG.pnts)+1; % adding 1/1000000 of a sample is necessary to prevent the error below for some files
if ~isempty(EEG.event(iEvent).epoch) && ~(newepoch == EEG.event(iEvent).epoch)
%error(sprintf('Event %d, wong epoch index %d vs %d\n', iEvent, newepoch, EEG.event(iEvent).epoch));
% This could be a bug in writing the file or a feature
% to fix this, line 275, recompule the latency of the onset of the epoch
% based on the block offset (since the latency of the onset of the epoch is wrong due either
% to a bug or a paus in the recording) then use this information to recompute the event latency
% (subtracting the wrong event begin and adding back the right one)
end
EEG.event(iEvent).epoch = newepoch;
end
else
% add boundary events
discontinuities = 0;
if ~isempty(cont) && cont(1).begintime ~= 0
error('First discontinuity does not start at time 0');
end
for iBound = 2:length(cont) % do not add first event
if cont(iBound-1).endtime ~= cont(iBound).begintime
EEG.event(end+1).type = 'boundary';
eventDuration = cont(iBound).begintime - cont(iBound-1).endtime; % in microseconds
discontinuities = discontinuities + eventDuration;
EEG.event(end).duration = eventDuration/1000000*EEG.srate; % in samples
sampleCalculated = ((cont(iBound).begintime-discontinuities)/1000000)*EEG.srate;
sampleBlock = blockSamples(cont(iBound).firstblock); % this assumes block of size 1
if abs(sampleCalculated-sampleBlock) > 1e-10
fprintf('Warning: segment discontinuity (%d samples missing - pause in the recording or bug?)\n', sampleCalculated-sampleBlock);
end
EEG.event(end).latency = (cont(iBound).begintime)/1000000*EEG.srate; % absolute time allow resorting events later
% EEG.event(end).latency = sampleCalculated;
end
end
% rename Break cnt events
end
%% resort events and check event structure
if ~isempty(EEG.event)
if any(cellfun(@isempty, { EEG.event.latency }))
error('Some empty event latency')
end
[~,iEvent] = sort([EEG.event.latency]);
EEG.event = EEG.event(iEvent);
% remove duration of remove data portions from events
subLatency = 0;
for iEvent = 1:length(EEG.event)
if strcmpi(EEG.event(iEvent).type, 'boundary')
subLatency = subLatency + EEG.event(iEvent).duration;
end
EEG.event(iEvent).latency = EEG.event(iEvent).latency-subLatency;
end
% events are not checked in this function if called from pop_mffimport.m
% because they would alter time locking event values when importing
% data trials
s = dbstack;
if length(s) <= 1 || ~strcmpi(s(2).file, 'pop_mffimport.m')
if exist('eeg_checkset.m', 'file') && exist('eeglab_options.m', 'file')
EEG = eeg_checkset(EEG,'eventconsistency');
end
end
end
data = EEG.data;
events = EEG.event;
chanlocs = EEG.chanlocs;
mff = EEG.etc;
try
EEG = eeg_checkset(EEG);
catch
EEG.pnts = size(EEG.data,2);
EEG.trials = size(EEG.data,3);
end