forked from facebookresearch/dora
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
105 lines (86 loc) · 3.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import sys
from dora import argparse_main, get_xp, distrib
from dora.lightning import trainer_from_argparse_args, PLLogProgress
from dora.log import colorize
import torch
import torch.nn.functional as F
from torchvision import models
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from .data import DataModule
class MainModule(pl.LightningModule):
def __init__(self, num_classes):
super().__init__()
self.model = models.resnet18(num_classes=num_classes)
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
scores = self(x)
loss = F.cross_entropy(scores, y)
# Those metrics will be forwarded to Dora Link automatically.
self.mylog('train_loss', loss, train=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
scores = self(x)
loss = F.cross_entropy(scores, y)
acc = (y == scores.argmax(-1)).float().mean()
# Those metrics will be forwarded to Dora Link automatically.
self.mylog('valid_loss', loss)
self.mylog('valid_acc', acc)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
def mylog(self, name, value, train=False):
# Here, it is quite important to have `sync_dist` set to True for valid,
# as otherwise you will get inacurate validation metrics (only on a shard of the data).
# If you are using PLLogProgress, set `prog_bar=True` along with `on_step=True`.
# If you want to metric logged to Dora link history, so that it appears in
# grid searches table, set `on_epoch=True`. PL typically add a `_epoch` suffix
# for epoch wise metrics. This will be automatically stripped and only the
# epoch wise metric will be saved.
self.log(name, value, on_epoch=True, sync_dist=not train, on_step=True, prog_bar=True)
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--data', default='/tmp/dora_test_mnist')
parser.add_argument('--restart', action='store_true')
parser.add_argument('-b', '--batch_size', type=int, default=32)
parser.add_argument('--dummy') # used to create multiple XP with same args.
pl.Trainer.add_argparse_args(parser)
return parser
EXCLUDE = ['data', 'restart']
@argparse_main(parser=get_parser(), dir='outputs_pl', exclude=EXCLUDE, use_underscore=True)
def main():
log_format = "".join([
"[" + colorize("%(asctime)s", "36") + "]",
"[" + colorize("%(name)s", "34") + "]",
"[" + colorize("%(levelname)s", "32") + "]",
" - ",
"%(message)s",
])
logging.basicConfig(
stream=sys.stdout, level=logging.INFO,
datefmt="%m-%d %H:%M:%S",
format=log_format)
logger_prog = logging.getLogger("progress")
progress = PLLogProgress(logger_prog, updates=10)
args = get_xp().cfg
world_size = distrib.get_distrib_spec().world_size
assert args.batch_size % world_size == 0
# Let us make sure the batch size is correct
args.batch_size //= world_size
data = DataModule(args.data, args.batch_size)
module = MainModule(10)
checkpoint_callback = ModelCheckpoint(
dirpath=get_xp().folder, monitor='valid_loss', save_last=True)
trainer = trainer_from_argparse_args(args, callbacks=[checkpoint_callback, progress])
trainer.fit(module, data)