-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatlon.py
284 lines (233 loc) · 9.77 KB
/
latlon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from __future__ import print_function
from dronekit import connect, VehicleMode, LocationGlobal, LocationGlobalRelative
from pymavlink import mavutil # Needed for command message definitions
import time
import math
import numpy as np
import geopy.distance
from classifyMARK3 import eye
# Set up option parsing to get connection string
import argparse
def connectMyCopter():
parser = argparse.ArgumentParser(description='commands')
parser.add_argument('--connect')
args = parser.parse_args()
connection_string = args.connect
baud_rate = 921600
print("\nConnecting to vehicle on: %s" % connection_string)
vehicle = connect(connection_string, baud=baud_rate, wait_ready=True)
return vehicle
vehicle = connectMyCopter()
def arm_and_takeoff(aTargetAltitude):
"""
Arms vehicle and fly to aTargetAltitude.
"""
print("Basic pre-arm checks")
# Don't let the user try to arm until autopilot is ready
while not vehicle.is_armable:
print(" Waiting for vehicle to initialise...")
time.sleep(1)
print("Arming motors")
# Copter should arm in GUIDED mode
vehicle.mode = VehicleMode("GUIDED")
vehicle.armed = True
while not vehicle.armed:
print(" Waiting for arming...")
time.sleep(1)
print("Taking off!")
vehicle.simple_takeoff(aTargetAltitude) # Take off to target altitude
# Wait until the vehicle reaches a safe height before processing the goto (otherwise the command
# after Vehicle.simple_takeoff will execute immediately).
while True:
print(" Altitude: ", vehicle.location.global_relative_frame.alt)
if vehicle.location.global_relative_frame.alt >= aTargetAltitude * 0.95: # Trigger just below target alt.
print("Reached target altitude")
break
time.sleep(1)
def get_dstance(cord1, cord2):
# return distance n meter
return (geopy.distance.geodesic(cord1, cord2).km) * 1000
def send_ned_velocity(velocity_z, to_alt):
msg = vehicle.message_factory.set_position_target_local_ned_encode(
0, # time_boot_ms (not used)
0, 0, # target system, target component
mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame
0b0000111111000111, # type_mask (only speeds enabled)
0, 0, 0, # x, y, z positions (not used)
0, 0, velocity_z, # x, y, z velocity in m/s
0, 0, 0, # x, y, z acceleration (not supported yet, ignored in GCS_Mavlink)
0, 0) # yaw, yaw_rate (not supported yet, ignored in GCS_Mavlink)
if to_alt == 0:
vehicle.send_mavlink(msg)
time.sleep(1)
return
while True:
vehicle.send_mavlink(msg)
print(" Altitude: ", vehicle.location.global_relative_frame.alt)
if vehicle.location.global_relative_frame.alt >= to_alt - 1 and vehicle.location.global_relative_frame.alt <= to_alt + 1:
print("Reached target altitude")
break
time.sleep(1)
def to_coord(lat, lng, theta, distance):
"""
to_coord a LatLng theta degrees counterclockwise and some
meters in that direction.
Notes:
http://www.movable-type.co.uk/scripts/latlong.html
0 DEGREES IS THE VERTICAL Y AXIS! IMPORTANT!
Args:
theta: A number in degrees.
distance: A number in meters.
Returns:
A new LatLng.
"""
theta = np.float32(theta)
E_RADIUS = 6371000
delta = np.divide(np.float32(distance), np.float32(E_RADIUS))
def to_radians(theta):
return np.divide(np.dot(theta, np.pi), np.float32(180.0))
def to_degrees(theta):
return np.divide(np.dot(theta, np.float32(180.0)), np.pi)
theta = to_radians(theta)
lat1 = to_radians(lat)
lng1 = to_radians(lng)
lat2 = np.arcsin( np.sin(lat1) * np.cos(delta) +
np.cos(lat1) * np.sin(delta) * np.cos(theta) )
lng2 = lng1 + np.arctan2( np.sin(theta) * np.sin(delta) * np.cos(lat1),
np.cos(delta) - np.sin(lat1) * np.sin(lat2))
lng2 = (lng2 + 3 * np.pi) % (2 * np.pi) - np.pi
return (to_degrees(lat2), to_degrees(lng2))
def goto_location(to_lat, to_lon, par): # wrapped function
curr_alt = vehicle.location.global_relative_frame.alt
to_pont = LocationGlobalRelative(to_lat, to_lon, curr_alt)
vehicle.simple_goto(to_pont, groundspeed)
to_cord = (to_lat, to_lon)
while True:
curr_lat = vehicle.location.global_relative_frame.lat
curr_lon = vehicle.location.global_relative_frame.lon
curr = LocationGlobalRelative(curr_lat, curr_lon, curr_alt)
if par == 0:
a, b, c = eye()
if c == 1:
vehicle.simple_goto(curr, groundspeed) # stay there
x = target()
if x != 0:
break
else:
vehicle.simple_goto(to_pont, groundspeed) # else continue with wave point
curr_lat = vehicle.location.global_relative_frame.lat
curr_lon = vehicle.location.global_relative_frame.lon
curr_cord = (curr_lat, curr_lon)
distance = get_dstance(curr_cord, to_cord)
print("distance remaining {}".format(distance))
if distance <= 2:
print("Reached within 2 meters of target location...")
break
time.sleep(1)
def goto(to_lat, to_lon): # wrapper function
goto_location(to_lat, to_lon, 0)
def drop_parcel():
msg = vehicle.message_factory.command_long_encode(
0, 0, # target_system, target_component
mavutil.mavlink.MAV_CMD_DO_SET_SERVO, # command
0, # confirmation
9, # servo number
2000, # servo position between 1000 and 2000
0, 0, 0, 0, 0) # param 3 ~ 7 not used
print("dropping parcel...")
# send command to vehicle
vehicle.send_mavlink(msg)
print("parcel dropped...")
def calc(a, b):
if a == 320 and b == 240:
return (0, 0)
d_pixels = math.sqrt((a - 320) * (a - 320) + (b - 240) * (b - 240)) # distance between drone and target
# 53.5 -> horizontal FOV obtained from Picamera documentation for 5 mp
# 41.41 -> vertical FOV obtained from Picamera documentation for 5 mp
# 62.2 -> for 8 mp
# 48.8 -> for 8 mp
a1 = 2 * vehicle.location.global_relative_frame.alt * math.tan(math.radians(62.2/2)) # horizontal distance in 'm' above 30 m
b1 = 2 * vehicle.location.global_relative_frame.alt * math.tan(math.radians(48.8/2)) # vertical distance in 'm' above 30 m
m = a1/(640 * 0.0002645833) # horizontal constant
n = b1/(480 * 0.0002645833)
if a < 320:
if b < 240:
theta = math.degrees(math.asin((320 - a) / d_pixels)) # get angle theta made to target
theta = 360 - theta # angle in clock wise direction
x = ((320 - a) * 0.0002645833) * m # horizontal distance converted to meters
y = ((240 - b) * 0.0002645833) * n # vertical distance converted to meters
d = math.sqrt((x * x) + (y * y)) # total distance to target in meters
elif b > 240:
theta = 180 + math.degrees(math.asin((b - 240) / d_pixels))
x = ((320 - a) * 0.0002645833) * m
y = ((b - 240) * 0.0002645833) * n
d = math.sqrt((x * x) + (y * y))
elif b == 240:
theta = 270
x = ((320 - a) * 0.0002645833) * m
y = 0
d = math.sqrt((x * x) + (y * y))
elif a > 320:
if b < 240:
theta = math.degrees(math.asin((a - 320) / d_pixels))
x = ((a - 320) * 0.0002645833) * m
y = ((240 - b) * 0.0002645833) * n
d = math.sqrt((x * x) + (y * y))
elif b > 240:
theta = 180 - math.degrees(math.asin((a - 320) / d_pixels))
x = ((a - 320) * 0.0002645833) * m
y = ((b - 240) * 0.0002645833) * n
d = math.sqrt((x * x) + (y * y))
elif b == 240:
theta = 90
x = ((a - 320) * 0.0002645833) * m
y = 0
d = math.sqrt((x * x) + (y * y))
elif a == 320:
if b == 0:
theta = 0
x = 0
y = 240 * 0.0002645833 * n
d = math.sqrt((x * x) + (y * y))
elif b == 480:
theta = 180
x = 0
y = ((b - 240) * 0.0002645833) * n
d = math.sqrt((x * x) + (y * y))
return (theta, d)
def target():
a, b, c = eye()
if c == 0: # re-check the presence of target
return 0
theta, d = calc(a, b) # function to find angle and distance to target
lat = vehicle.location.global_relative_frame.lat
lon = vehicle.location.global_relative_frame.lon
if d != 0:
lat, lon = to_coord(lat, lon, theta, d) # get coordinates of target
goto_location(lat, lon, 1) # goto target location
send_ned_velocity(DOWN, 20) # descend to 20 m
send_ned_velocity(0, 0) # stop at 20 m
time.sleep(2)
drop_parcel() # drop parcel
time.sleep(2)
print("Mission complete, Returning to Launch")
vehicle.mode = VehicleMode("RTL") # Return to launch
vehicle.close()
exit()
def my_mission():
arm_and_takeoff(30)
goto(25.6898, 82.2646)
time.sleep(2)
print("no target detected : Returning to Launch")
vehicle.mode = VehicleMode("RTL")
RIGHT = 2 # velocity in m/s
LEFT = -2
FRONT = 2
BACK = -2
UP = -0.5
DOWN = 0.5
groundspeed = 1.5
my_mission()
print("Close vehicle object")
vehicle.close()
print("Completed")