Skip to content

Latest commit

 

History

History
138 lines (92 loc) · 4.33 KB

README.md

File metadata and controls

138 lines (92 loc) · 4.33 KB

[MM'21] Constrained Graphic Layout Generation via Latent Optimization

This repository provides the official code for the paper "Constrained Graphic Layout Generation via Latent Optimization", especially the code for:

  • LayoutGAN++: generative adversarial networks for layout generation
  • CLG-LO: a framework for generating layouts that satisfy constraints
  • Layout evaluation: measuring the quantitative metrics of Layout FID, Maximum IoU, Alignment, and Overlap for generated layouts

Installation

  1. Clone this repository

    git clone https://github.com/ktrk115/const_layout.git
    cd const_layout
  2. Create a new conda environment (Python 3.8)

    conda create -n const_layout python=3.8
    conda activate const_layout
  3. Install PyTorch 1.8.1 and PyTorch Geometric 1.7.2. An example of the PyG installation command is shown below.

    pip install torch-scatter==2.0.7 -f https://data.pyg.org/whl/torch-1.8.1+cu111.html
    pip install torch-sparse==0.6.10 -f https://data.pyg.org/whl/torch-1.8.1+cu111.html
    pip install torch-geometric==1.7.2
  4. Install the other dependent libraries

    pip install -r requirements.txt
  5. Prepare data (see this instruction)

  6. Download pre-trained models

    ./download_model.sh
  7. Install ImageMagick for visualization

Development environment

  • Ubuntu 18.04, CUDA 11.1

LayoutGAN++

Architecture

Training animation

Generate layouts with LayoutGAN++

python generate.py pretrained/layoutganpp_rico.pth.tar --out_path output/generated_layouts.pkl --num_save 5

Train LayoutGAN++ model

python train.py --dataset rico --batch_size 64 --iteration 200000 --latent_size 4 --lr 1e-05 --G_d_model 256 --G_nhead 4 --G_num_layers 8 --D_d_model 256 --D_nhead 4 --D_num_layers 8

CLG-LO

w/ beautification constraints w/ relational constraints

Generate layouts with beautification constraints

python generate_const.py pretrained/layoutganpp_publaynet.pth.tar --const_type beautify --out_path output/beautify/generated_layouts.pkl --num_save 5

Generate layouts with relational constraints

python generate_const.py pretrained/layoutganpp_publaynet.pth.tar --const_type relation --out_path output/relation/generated_layouts.pkl --num_save 5

Layout evaluation

Evaluate generated layouts

python eval.py rico output/generated_layouts.pkl

A pickle file should be a list of layouts, where each layout is a tuple of bounding boxes and labels. The bounding box is represented by [x, y, width, height] in normalized coordinates, and the label is represented by an index. An example is shown below.

In [x]: layouts
Out[x]:
[(array([[0.47403812, 0.11276676, 0.6250037 , 0.02210438],
         [0.49971417, 0.8550553 , 0.81388366, 0.03492427],
         [0.49919674, 0.47857162, 0.81024694, 0.7070079 ]], dtype=float32),
  array([0, 0, 3]),
  ...

Citation

If this repository helps your research, please consider citing our paper.

@inproceedings{Kikuchi2021,
    title = {Constrained Graphic Layout Generation via Latent Optimization},
    author = {Kotaro Kikuchi and Edgar Simo-Serra and Mayu Otani and Kota Yamaguchi},
    booktitle = {ACM International Conference on Multimedia},
    series = {MM '21},
    year = {2021},
    pages = {88--96},
    doi = {10.1145/3474085.3475497}
}

Licence

GNU AGPLv3

Related repositories