forked from ktrk115/const_layout
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
255 lines (211 loc) · 10 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import argparse
os.environ['OMP_NUM_THREADS'] = '1' # noqa
import torch
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T
from torch_geometric.data import DataLoader
from torch_geometric.utils import to_dense_batch
from torch.utils.tensorboard import SummaryWriter
from data import get_dataset
from metric import LayoutFID, compute_maximum_iou
from model.layoutganpp import Generator, Discriminator
from data.util import LexicographicSort, HorizontalFlip
from util import init_experiment, save_image, save_checkpoint
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--name', type=str, default='',
help='experiment name')
parser.add_argument('--dataset', type=str, default='rico',
choices=['rico', 'publaynet', 'magazine'],
help='dataset name')
parser.add_argument('--batch_size', type=int, default=64,
help='batch size')
parser.add_argument('--iteration', type=int, default=int(2e+5),
help='number of iterations to train for')
parser.add_argument('--seed', type=int, help='manual seed')
# General
parser.add_argument('--latent_size', type=int, default=4,
help='latent size')
parser.add_argument('--lr', type=float, default=1e-5,
help='learning rate')
parser.add_argument('--aug_flip', action='store_true',
help='use horizontal flip for data augmentation.')
# Generator
parser.add_argument('--G_d_model', type=int, default=256,
help='d_model for generator')
parser.add_argument('--G_nhead', type=int, default=4,
help='nhead for generator')
parser.add_argument('--G_num_layers', type=int, default=8,
help='num_layers for generator')
# Discriminator
parser.add_argument('--D_d_model', type=int, default=256,
help='d_model for discriminator')
parser.add_argument('--D_nhead', type=int, default=4,
help='nhead for discriminator')
parser.add_argument('--D_num_layers', type=int, default=8,
help='num_layers for discriminator')
args = parser.parse_args()
print(args)
out_dir = init_experiment(args, "LayoutGAN++")
writer = SummaryWriter(out_dir)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# load dataset
transforms = [LexicographicSort()]
if args.aug_flip:
transforms = [T.RandomApply([HorizontalFlip()], 0.5)] + transforms
train_dataset = get_dataset(args.dataset, 'train',
transform=T.Compose(transforms))
train_dataloader = DataLoader(train_dataset,
batch_size=args.batch_size,
num_workers=4,
pin_memory=True,
shuffle=True)
val_dataset = get_dataset(args.dataset, 'val')
val_dataloader = DataLoader(val_dataset,
batch_size=args.batch_size,
num_workers=4,
pin_memory=True,
shuffle=False)
num_label = train_dataset.num_classes
# setup model
netG = Generator(args.latent_size, num_label,
d_model=args.G_d_model,
nhead=args.G_nhead,
num_layers=args.G_num_layers,
).to(device)
netD = Discriminator(num_label,
d_model=args.D_d_model,
nhead=args.D_nhead,
num_layers=args.D_num_layers,
).to(device)
# prepare for evaluation
fid_train = LayoutFID(args.dataset, device)
fid_val = LayoutFID(args.dataset, device)
fixed_label = None
val_layouts = [(data.x.numpy(), data.y.numpy()) for data in val_dataset]
# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr=args.lr)
optimizerG = optim.Adam(netG.parameters(), lr=args.lr)
iteration = 0
last_eval, best_iou = -1e+8, -1e+8
max_epoch = args.iteration * args.batch_size / len(train_dataset)
max_epoch = int(torch.ceil(torch.tensor(max_epoch)).item())
for epoch in range(max_epoch):
netG.train(), netD.train()
for i, data in enumerate(train_dataloader):
data = data.to(device)
label, mask = to_dense_batch(data.y, data.batch)
bbox_real, _ = to_dense_batch(data.x, data.batch)
padding_mask = ~mask
z = torch.randn(label.size(0), label.size(1),
args.latent_size, device=device)
# Update G network
netG.zero_grad()
bbox_fake = netG(z, label, padding_mask)
D_fake = netD(bbox_fake, label, padding_mask)
loss_G = F.softplus(-D_fake).mean()
loss_G.backward()
optimizerG.step()
# Update D network
netD.zero_grad()
D_fake = netD(bbox_fake.detach(), label, padding_mask)
loss_D_fake = F.softplus(D_fake).mean()
D_real, logit_cls, bbox_recon = \
netD(bbox_real, label, padding_mask, reconst=True)
loss_D_real = F.softplus(-D_real).mean()
loss_D_recl = F.cross_entropy(logit_cls, data.y)
loss_D_recb = F.mse_loss(bbox_recon, data.x)
loss_D = loss_D_real + loss_D_fake
loss_D += loss_D_recl + 10 * loss_D_recb
loss_D.backward()
optimizerD.step()
fid_train.collect_features(bbox_fake, label, padding_mask)
fid_train.collect_features(bbox_real, label, padding_mask,
real=True)
if iteration % 50 == 0:
D_real = torch.sigmoid(D_real).mean().item()
D_fake = torch.sigmoid(D_fake).mean().item()
loss_D, loss_G = loss_D.item(), loss_G.item()
loss_D_fake, loss_D_real = loss_D_fake.item(), loss_D_real.item()
loss_D_recl, loss_D_recb = loss_D_recl.item(), loss_D_recb.item()
print('\t'.join([
f'[{epoch}/{max_epoch}][{i}/{len(train_dataloader)}]',
f'Loss_D: {loss_D:E}', f'Loss_G: {loss_G:E}',
f'Real: {D_real:.3f}', f'Fake: {D_fake:.3f}',
]))
# add data to tensorboard
tag_scalar_dict = {'real': D_real, 'fake': D_fake}
writer.add_scalars('Train/D_value', tag_scalar_dict, iteration)
writer.add_scalar('Train/Loss_D', loss_D, iteration)
writer.add_scalar('Train/Loss_D_fake', loss_D_fake, iteration)
writer.add_scalar('Train/Loss_D_real', loss_D_real, iteration)
writer.add_scalar('Train/Loss_D_recl', loss_D_recl, iteration)
writer.add_scalar('Train/Loss_D_recb', loss_D_recb, iteration)
writer.add_scalar('Train/Loss_G', loss_G, iteration)
if iteration % 5000 == 0:
out_path = out_dir / f'real_samples.png'
if not out_path.exists():
save_image(bbox_real, label, mask,
train_dataset.colors, out_path)
if fixed_label is None:
fixed_label = label
fixed_z = z
fixed_mask = mask
with torch.no_grad():
netG.eval()
out_path = out_dir / f'fake_samples_{iteration:07d}.png'
bbox_fake = netG(fixed_z, fixed_label, ~fixed_mask)
save_image(bbox_fake, fixed_label, fixed_mask,
train_dataset.colors, out_path)
netG.train()
iteration += 1
fid_score_train = fid_train.compute_score()
if epoch != max_epoch - 1:
if iteration - last_eval < 1e+4:
continue
# validation
last_eval = iteration
fake_layouts = []
netG.eval(), netD.eval()
with torch.no_grad():
for i, data in enumerate(val_dataloader):
data = data.to(device)
label, mask = to_dense_batch(data.y, data.batch)
bbox_real, _ = to_dense_batch(data.x, data.batch)
padding_mask = ~mask
z = torch.randn(label.size(0), label.size(1),
args.latent_size, device=device)
bbox_fake = netG(z, label, padding_mask)
fid_val.collect_features(bbox_fake, label, padding_mask)
fid_val.collect_features(bbox_real, label, padding_mask,
real=True)
# collect generated layouts
for j in range(label.size(0)):
_mask = mask[j]
b = bbox_fake[j][_mask].cpu().numpy()
l = label[j][_mask].cpu().numpy()
fake_layouts.append((b, l))
fid_score_val = fid_val.compute_score()
max_iou_val = compute_maximum_iou(val_layouts, fake_layouts)
writer.add_scalar('Epoch', epoch, iteration)
tag_scalar_dict = {'train': fid_score_train, 'val': fid_score_val}
writer.add_scalars('Score/Layout FID', tag_scalar_dict, iteration)
writer.add_scalar('Score/Maximum IoU', max_iou_val, iteration)
# do checkpointing
is_best = best_iou < max_iou_val
best_iou = max(max_iou_val, best_iou)
save_checkpoint({
'args': vars(args),
'epoch': epoch + 1,
'netG': netG.state_dict(),
'netD': netD.state_dict(),
'best_iou': best_iou,
'optimizerG': optimizerG.state_dict(),
'optimizerD': optimizerD.state_dict(),
}, is_best, out_dir)
if __name__ == "__main__":
main()