print([param.shape for param in self.network.parameters()])
before = torch.cat([param.clone().detach().flatten() for param in self.network.parameters()])
# forward, loss, backward, step
after = torch.cat([param.clone().detach().flatten() for param in self.network.parameters()])
assert torch.nonzero(after - before).shape[0] == before.shape[0]
ps -x | grep diode_clipper
python -m cProfile -o diode_ode_numerical_profile.bin diode_clipper\diode_ode_numerical.py -u 38 -l 1 -s 5 -i 0 -m forward_euler -f 22050
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
find DIR -daystart -ctime 0 -type f -not -name '*.png' -print -delete
python harmonic_oscillator\main.py --epochs 1 --visualize --interpolation linear -c 0.2 --nsteps 1000
- gcc
- cuda
module list
output:
- gcc/9.2.0
- libiconv/1.16
- xz/5.2.5
- zlib/1.2.11
- libxml2/2.9.12
- cuda/11.2.1
srun -p interactive --time=01:00:00 --gres=gpu:1 --mem=3000M --pty bash
srun -p interactive --time=01:00:00 --mem=3000M --pty bash