-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathrun_RUSBoost.m
48 lines (43 loc) · 2.08 KB
/
run_RUSBoost.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This code is to replicate the results of RUSBoost model %
% Our results are generated using Matlab R2020b on Windows 10 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
diary("results_rusboost.txt");
for year_test = 2003:2014
rng(0,'twister'); % fix random seed for reproducing the results
% read training data
fprintf('==> Running RUSBoost (training period: %d-%d, testing period: %d, with %d-year gap)...\n',1991,year_test-2,year_test,2);
data_train = data_reader('data_FraudDetection_JAR2020.csv','data_default',1991,year_test-2);
y_train = data_train.labels;
X_train = data_train.features;
paaer_train = data_train.paaers;
% read testing data
data_test = data_reader('data_FraudDetection_JAR2020.csv','data_default',year_test,year_test);
y_test = data_test.labels;
X_test = data_test.features;
paaer_test = unique(data_test.paaers(data_test.labels~=0));
% handle serial frauds using PAAER
y_train(ismember(paaer_train,paaer_test)) = 0;
% train model
t1 = tic;
t = templateTree('MinLeafSize',5); % base model
% see "tune_RUSBoost.m" for the tuning of the number of trees
rusboost = fitensemble(X_train,y_train,'RUSBoost',300,t,'LearnRate',0.1,'RatioToSmallest',[1 1]);
t_train = toc(t1);
% test model
t2 = tic;
[label_predict,dec_values] = predict(rusboost,X_test);
dec_values = dec_values(:,2);
t_test = toc(t2);
% print performance results
fprintf('Training time: %g seconds | Testing time %g seconds \n', t_train, t_test);
for topN = [0.01, 0.02, 0.03, 0.04, 0.05]
metrics = evaluate(y_test,label_predict,dec_values,topN);
fprintf('Performance (top%d%% as cut-off thresh): \n',topN*100);
fprintf('AUC: %.4f \n', metrics.auc);
fprintf('NCDG@k: %.4f \n', metrics.ndcg_at_k);
fprintf('Sensitivity: %.2f%% \n', metrics.sensitivity_topk*100);
fprintf('Precision: %.2f%% \n', metrics.precision_topk*100);
end
end
diary off;