-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_baseline.py
216 lines (181 loc) · 9.52 KB
/
train_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import datetime
import torch
import torchvision
import transforms
from network_files import FasterRCNN, AnchorsGenerator
from backbone import MobileNetV2, vgg, resnet101
from my_dataset import VOCDataSet
from train_utils.config import cfg
from train_utils import train_eval_utils as utils
def create_model(num_classes):
# https://download.pytorch.org/models/vgg16-397923af.pth
# 如果使用vgg16的话就下载对应预训练权重并取消下面注释,接着把mobilenetv2模型对应的两行代码注释掉
# vgg_feature = vgg(model_name="vgg16", weights_path="./backbone/vgg16.pth").features
# backbone = torch.nn.Sequential(*list(vgg_feature._modules.values())[:-1]) # 删除features中最后一个Maxpool层
# backbone.out_channels = 512
# https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
# backbone = MobileNetV2(weights_path="./backbone/mobilenet_v2.pth").features
# backbone.out_channels = 1280 # 设置对应backbone输出特征矩阵的channels
# use resnet101 as baseline backbone
backbone = resnet101()
print("Loading pretrained weights from %s" % ("./backbone/resnet101.pth"))
state_dict = torch.load("./backbone/resnet101.pth")
backbone.load_state_dict({k: v for k, v in state_dict.items() if k in backbone.state_dict()})
backbone.out_channels = 2048
anchor_generator = AnchorsGenerator(sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),))
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'], # 在哪些特征层上进行roi pooling
output_size=[7, 7], # roi_pooling输出特征矩阵尺寸
sampling_ratio=2) # 采样率
model = FasterRCNN(backbone=backbone,
num_classes=num_classes,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)
return model
def main(args):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Using {} device training.".format(device.type))
# 用来保存coco_info的文件
if not os.path.exists("baseline_r"):
os.makedirs("baseline_r")
results_file = "baseline_r/results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
# 检查保存权重文件夹是否存在,不存在则创建
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
data_transform = {
"train": transforms.Compose([transforms.ToTensor(),
transforms.RandomHorizontalFlip(0.5)]),
"val": transforms.Compose([transforms.ToTensor()])
}
VOC_root = args.data_path # VOCdevkit
# build training set. the same as FSDet and Meta RCNN
if args.meta_type == 1:
args.train_txt = "voc_2007_train_first_split+voc_2012_train_first_split"
metaclass = cfg.TRAIN.BASECLASSES_FIRST
allclass = cfg.TRAIN.ALLCLASSES_FIRST
elif args.meta_type == 2:
args.train_txt = "voc_2007_train_second_split+voc_2012_train_second_split"
metaclass = cfg.TRAIN.BASECLASSES_SECOND
allclass = cfg.TRAIN.ALLCLASSES_SECOND
elif args.meta_type == 3:
args.train_txt = "voc_2007_train_third_split+voc_2012_train_third_split"
metaclass = cfg.TRAIN.BASECLASSES_THIRD
allclass = cfg.TRAIN.ALLCLASSES_THIRD
# check voc root
if os.path.exists(os.path.join(VOC_root, "VOCdevkit")) is False:
raise FileNotFoundError("VOCdevkit dose not in path:'{}'.".format(VOC_root))
# load train data set
# VOCdevkit -> VOC2012 -> ImageSets -> Main -> train.txt
train_data_set = VOCDataSet(VOC_root, allclass, data_transform["train"], args.train_txt)
# 注意这里的collate_fn是自定义的,因为读取的数据包括image和targets,不能直接使用默认的方法合成batch
batch_size = args.bs
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using %g dataloader workers' % nw)
train_data_loader = torch.utils.data.DataLoader(train_data_set,
batch_size=batch_size,
shuffle=True,
num_workers=nw,
collate_fn=train_data_set.collate_fn)
# load validation data set
# VOCdevkit -> VOC2012 -> ImageSets -> Main -> val.txt
val_data_set = VOCDataSet(VOC_root, metaclass, data_transform["val"], "val.txt")
val_data_set_loader = torch.utils.data.DataLoader(val_data_set,
batch_size=args.bs_v,
shuffle=False,
pin_memory=True,
num_workers=nw,
collate_fn=train_data_set.collate_fn)
# create model num_classes equal background + 20 classes
model = create_model(len(metaclass)+1)
# print(model)
model.to(device)
train_loss = []
learning_rate = []
val_map = []
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# first frozen backbone and train 5 epochs #
# 首先冻结前置特征提取网络权重(backbone),训练rpn以及最终预测网络部分 #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# define optimizer
lr = cfg.TRAIN.LEARNING_RATE
params = []
for key, value in dict(model.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
params += [{'params': [value], 'lr': lr * (cfg.TRAIN.DOUBLE_BIAS + 1), \
'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
else:
params += [{'params': [value], 'lr': lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr, momentum=cfg.TRAIN.MOMENTUM)
# learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=3,
gamma=0.33)
for epoch in range(args.start_epoch, args.epochs, 1):
# train for one epoch, printing every 50 iterations
mean_loss, lr = utils.train_one_epoch(model, optimizer, train_data_loader,
device, epoch, print_freq=50)
train_loss.append(mean_loss.item())
learning_rate.append(lr)
# update the learning rate
lr_scheduler.step()
# evaluate on the test dataset
coco_info = utils.evaluate(model, val_data_set_loader, device=device)
# write into txt
with open(results_file, "a") as f:
# 写入的数据包括coco指标还有loss和learning rate
result_info = [str(round(i, 4)) for i in coco_info + [mean_loss.item()]] + [str(round(lr, 6))]
txt = "epoch:{} {}".format(epoch, ' '.join(result_info))
f.write(txt + "\n")
val_map.append(coco_info[1]) # pascal mAP
# save weights
# 仅保存最后5个epoch的权重
if epoch in range(args.epochs)[-5:]:
save_files = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch}
torch.save(save_files, "{}/resnet101-baseline-{}.pth".format(args.output_dir,epoch))
# plot loss and lr curve
if len(train_loss) != 0 and len(learning_rate) != 0:
from plot_curve import plot_loss_and_lr
plot_loss_and_lr(train_loss, learning_rate)
# plot mAP curve
if len(val_map) != 0:
from plot_curve import plot_map
plot_map(val_map)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description=__doc__)
# 训练设备类型
parser.add_argument('--device', default='cuda:0', help='device')
# 训练数据集的根目录(VOCdevkit)
parser.add_argument('--data_path', default='./', help='dataset')
# 文件保存地址
parser.add_argument('--output_dir', default='./save_weights', help='path where to save')
# 若需要接着上次训练,则指定上次训练保存权重文件地址
parser.add_argument('--resume', default='', type=str, help='resume from checkpoint')
# 指定接着从哪个epoch数开始训练
parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
# 训练的总epoch数
parser.add_argument('--epochs', default=25, type=int, metavar='N',
help='number of total epochs to run')
# split (1/2/3)
parser.add_argument('--meta_type', default=1, type=int,
help='which split of VOC to implement, 1, 2, or 3')
# shots
parser.add_argument('--shots', default=10, type=int,
help='how many shots in few-shot learning')
# 训练的batch size
parser.add_argument('--bs', default=1, type=int, metavar='N',
help='batch size when training.')
# validation batch size
parser.add_argument('--bs_v', default=4, type=int, metavar='N',
help='batch size when training.')
args = parser.parse_args()
print(args)
main(args)