-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_multi_GPU.py
248 lines (206 loc) · 10.7 KB
/
train_multi_GPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import time
import os
import datetime
import torch
import transforms
from my_dataset import VOC2012DataSet
from backbone import resnet50_fpn_backbone
from network_files import FasterRCNN, FastRCNNPredictor
import train_utils.train_eval_utils as utils
from train_utils import GroupedBatchSampler, create_aspect_ratio_groups, init_distributed_mode, save_on_master, mkdir
def create_model(num_classes, device):
# 如果显存很小,建议使用默认的FrozenBatchNorm2d
# trainable_layers包括['layer4', 'layer3', 'layer2', 'layer1', 'conv1'], 5代表全部训练
backbone = resnet50_fpn_backbone(norm_layer=torch.nn.BatchNorm2d,
trainable_layers=3)
# 训练自己数据集时不要修改这里的91,修改的是传入的num_classes参数
model = FasterRCNN(backbone=backbone, num_classes=91)
# 载入预训练模型权重
# https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth
weights_dict = torch.load("./backbone/fasterrcnn_resnet50_fpn_coco.pth", map_location=device)
missing_keys, unexpected_keys = model.load_state_dict(weights_dict, strict=False)
if len(missing_keys) != 0 or len(unexpected_keys) != 0:
print("missing_keys: ", missing_keys)
print("unexpected_keys: ", unexpected_keys)
# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
return model
def main(args):
init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# 用来保存coco_info的文件
results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
# Data loading code
print("Loading data")
data_transform = {
"train": transforms.Compose([transforms.ToTensor(),
transforms.RandomHorizontalFlip(0.5)]),
"val": transforms.Compose([transforms.ToTensor()])
}
VOC_root = args.data_path
# check voc root
if os.path.exists(os.path.join(VOC_root, "VOCdevkit")) is False:
raise FileNotFoundError("VOCdevkit dose not in path:'{}'.".format(VOC_root))
# load train data set
# VOCdevkit -> VOC2012 -> ImageSets -> Main -> train.txt
train_data_set = VOC2012DataSet(VOC_root, data_transform["train"], "train.txt")
# load validation data set
# VOCdevkit -> VOC2012 -> ImageSets -> Main -> val.txt
val_data_set = VOC2012DataSet(VOC_root, data_transform["val"], "val.txt")
print("Creating data loaders")
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data_set)
test_sampler = torch.utils.data.distributed.DistributedSampler(val_data_set)
else:
train_sampler = torch.utils.data.RandomSampler(train_data_set)
test_sampler = torch.utils.data.SequentialSampler(val_data_set)
if args.aspect_ratio_group_factor >= 0:
# 统计所有图像比例在bins区间中的位置索引
group_ids = create_aspect_ratio_groups(train_data_set, k=args.aspect_ratio_group_factor)
train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
else:
train_batch_sampler = torch.utils.data.BatchSampler(
train_sampler, args.batch_size, drop_last=True)
data_loader = torch.utils.data.DataLoader(
train_data_set, batch_sampler=train_batch_sampler, num_workers=args.workers,
collate_fn=train_data_set.collate_fn)
data_loader_test = torch.utils.data.DataLoader(
val_data_set, batch_size=1,
sampler=test_sampler, num_workers=args.workers,
collate_fn=train_data_set.collate_fn)
print("Creating model")
# create model num_classes equal background + 20 classes
model = create_model(num_classes=args.num_classes + 1, device=device)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
# 如果传入resume参数,即上次训练的权重地址,则接着上次的参数训练
if args.resume:
# If map_location is missing, torch.load will first load the module to CPU
# and then copy each parameter to where it was saved,
# which would result in all processes on the same machine using the same set of devices.
checkpoint = torch.load(args.resume, map_location='cpu') # 读取之前保存的权重文件(包括优化器以及学习率策略)
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.test_only:
utils.evaluate(model, data_loader_test, device=device)
return
train_loss = []
learning_rate = []
val_map = []
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
mean_loss, lr = utils.train_one_epoch(model, optimizer, data_loader, device,
epoch, args.print_freq, warmup=True)
train_loss.append(mean_loss.item())
learning_rate.append(lr)
# update learning rate
lr_scheduler.step()
# evaluate after every epoch
coco_info = utils.evaluate(model, data_loader_test, device=device)
val_map.append(coco_info[1]) # pascal mAP
# 只在主进程上进行写操作
if args.rank in [-1, 0]:
# write into txt
with open(results_file, "a") as f:
# 写入的数据包括coco指标还有loss和learning rate
result_info = [str(round(i, 4)) for i in coco_info + [mean_loss.item()]] + [str(round(lr, 6))]
txt = "epoch:{} {}".format(epoch, ' '.join(result_info))
f.write(txt + "\n")
if args.output_dir:
# 只在主节点上执行保存权重操作
save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'args': args,
'epoch': epoch},
os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if args.rank in [-1, 0]:
# plot loss and lr curve
if len(train_loss) != 0 and len(learning_rate) != 0:
from plot_curve import plot_loss_and_lr
plot_loss_and_lr(train_loss, learning_rate)
# plot mAP curve
if len(val_map) != 0:
from plot_curve import plot_map
plot_map(val_map)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description=__doc__)
# 训练文件的根目录(VOCdevkit)
parser.add_argument('--data-path', default='./', help='dataset')
# 训练设备类型
parser.add_argument('--device', default='cuda', help='device')
# 检测目标类别数(不包含背景)
parser.add_argument('--num-classes', default=20, type=int, help='num_classes')
# 每块GPU上的batch_size
parser.add_argument('-b', '--batch-size', default=4, type=int,
help='images per gpu, the total batch size is $NGPU x batch_size')
# 指定接着从哪个epoch数开始训练
parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
# 训练的总epoch数
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
# 数据加载以及预处理的线程数
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# 学习率,这个需要根据gpu的数量以及batch_size进行设置0.02 / 8 * num_GPU
parser.add_argument('--lr', default=0.02, type=float,
help='initial learning rate, 0.02 is the default value for training '
'on 8 gpus and 2 images_per_gpu')
# SGD的momentum参数
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
# SGD的weight_decay参数
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
# 针对torch.optim.lr_scheduler.StepLR的参数
parser.add_argument('--lr-step-size', default=8, type=int, help='decrease lr every step-size epochs')
# 针对torch.optim.lr_scheduler.MultiStepLR的参数
parser.add_argument('--lr-steps', default=[7, 12], nargs='+', type=int, help='decrease lr every step-size epochs')
# 针对torch.optim.lr_scheduler.MultiStepLR的参数
parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
# 训练过程打印信息的频率
parser.add_argument('--print-freq', default=20, type=int, help='print frequency')
# 文件保存地址
parser.add_argument('--output-dir', default='./multi_train', help='path where to save')
# 基于上次的训练结果接着训练
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--aspect-ratio-group-factor', default=3, type=int)
# 不训练,仅测试
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
# 开启的进程数(注意不是线程)
parser.add_argument('--world-size', default=4, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
args = parser.parse_args()
# 如果指定了保存文件地址,检查文件夹是否存在,若不存在,则创建
if args.output_dir:
mkdir(args.output_dir)
main(args)