-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmipicam_tracking.py
348 lines (292 loc) · 11.2 KB
/
mipicam_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import cv2
import numpy as np
import collections
import threading
import pycuda.driver as cuda
from utils.ssd import TrtSSD
from filterpy.kalman import KalmanFilter
from numba import jit
from sklearn.utils.linear_assignment_ import linear_assignment
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
s_img, s_boxes = None, None
INPUT_HW = (300, 300)
MAIN_THREAD_TIMEOUT = 20.0 # 20 seconds
# SORT Multi object tracking
#iou
@jit
def iou(bb_test, bb_gt):
xx1 = np.maximum(bb_test[0], bb_gt[0])
yy1 = np.maximum(bb_test[1], bb_gt[1])
xx2 = np.minimum(bb_test[2], bb_gt[2])
yy2 = np.minimum(bb_test[3], bb_gt[3])
w = np.maximum(0., xx2 - xx1)
h = np.maximum(0., yy2 - yy1)
wh = w * h
o = wh / ((bb_test[2] - bb_test[0]) * (bb_test[3] - bb_test[1])
+ (bb_gt[2] - bb_gt[0]) * (bb_gt[3] - bb_gt[1]) - wh)
return o
#[x1, y1, x2, y2] -> [u, v, s, r]
def convert_bbox_to_z(bbox):
"""
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
[u,v,s,r] where u,v is the centre of the box and s is the scale/area and r is
the aspect ratio
"""
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x = bbox[0] + w / 2.
y = bbox[1] + h / 2.
s = w * h # scale is just area
r = w / float(h)
return np.array([x, y, s, r]).reshape((4, 1))
#[u, v, s, r] -> [x1, y1, x2, y2]
def convert_x_to_bbox(x, score=None):
"""
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
"""
w = np.sqrt(x[2] * x[3])
h = x[2] / w
if score == None:
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4))
else:
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5))
#
class KalmanBoxTracker(object):
"""
This class represents the internel state of individual tracked objects observed as bbox.
"""
count = 0
def __init__(self, bbox):
"""
Initialises a tracker using initial bounding box.
"""
# define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array(
[[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
self.kf.H = np.array(
[[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])
self.kf.R[2:, 2:] *= 10.
self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1, -1] *= 0.01
self.kf.Q[4:, 4:] *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
def update(self, bbox):
"""
Updates the state vector with observed bbox.
"""
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1
self.kf.update(convert_bbox_to_z(bbox))
def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
if (self.kf.x[6] + self.kf.x[2]) <= 0:
self.kf.x[6] *= 0.0
self.kf.predict()
self.age += 1
if self.time_since_update > 0:
self.hit_streak = 0
self.time_since_update += 1
self.history.append(convert_x_to_bbox(self.kf.x))
return self.history[-1]
def get_state(self):
"""
Returns the current bounding box estimate.
"""
return convert_x_to_bbox(self.kf.x)
def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3):
"""
Assigns detections to tracked object (both represented as bounding boxes)
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if len(trackers) == 0:
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int)
iou_matrix = np.zeros((len(detections), len(trackers)), dtype=np.float32)
for d, det in enumerate(detections):
for t, trk in enumerate(trackers):
iou_matrix[d, t] = iou(det, trk)
#Hungarian Algorithm
matched_indices = linear_assignment(-iou_matrix)
unmatched_detections = []
for d, det in enumerate(detections):
if d not in matched_indices[:, 0]:
unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if t not in matched_indices[:, 1]:
unmatched_trackers.append(t)
# filter out matched with low IOU
matches = []
for m in matched_indices:
if iou_matrix[m[0], m[1]] < iou_threshold:
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1, 2))
if len(matches) == 0:
matches = np.empty((0, 2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
#TensorRT Detection
class TrtThread(threading.Thread):
def __init__(self, condition, cam, model, conf_th):
"""__init__
# Arguments
condition: the condition variable used to notify main
thread about new frame and detection result
cam: the camera object for reading input image frames
model: a string, specifying the TRT SSD model
conf_th: confidence threshold for detection
"""
threading.Thread.__init__(self)
self.condition = condition
self.cam = cam
self.model = model
self.conf_th = conf_th
self.cuda_ctx = None # to be created when run
self.trt_ssd = None # to be created when run
self.running = False
def run(self):
global s_img, s_boxes
print('TrtThread: loading the TRT SSD engine...')
self.cuda_ctx = cuda.Device(0).make_context() # GPU 0
self.trt_ssd = TrtSSD(self.model, INPUT_HW)
print('TrtThread: start running...')
self.running = True
while self.running:
ret, img = self.cam.read()
if img is None:
break
img = cv2.resize(img, (300, 300))
boxes, confs, clss = self.trt_ssd.detect(img, self.conf_th)
with self.condition:
s_img, s_boxes = img, boxes
self.condition.notify()
del self.trt_ssd
self.cuda_ctx.pop()
del self.cuda_ctx
print('TrtThread: stopped...')
def stop(self):
self.running = False
self.join()
def get_frame(condition):
frame = 0
max_age = 15
trackers = []
global s_img, s_boxes
print("frame number ", frame)
frame += 1
idstp = collections.defaultdict(list)
idcnt = []
incnt, outcnt = 0, 0
while True:
with condition:
if condition.wait(timeout=MAIN_THREAD_TIMEOUT):
img, boxes = s_img, s_boxes
else:
raise SystemExit('ERROR: timeout waiting for img from child')
boxes = np.array(boxes)
H, W = img.shape[:2]
trks = np.zeros((len(trackers), 5))
to_del = []
for t, trk in enumerate(trks):
pos = trackers[t].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
if np.any(np.isnan(pos)):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
trackers.pop(t)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(boxes, trks)
# update matched trackers with assigned detections
for t, trk in enumerate(trackers):
if t not in unmatched_trks:
d = matched[np.where(matched[:, 1] == t)[0], 0]
trk.update(boxes[d, :][0])
xmin, ymin, xmax, ymax = boxes[d, :][0]
cy = int((ymin + ymax) / 2)
#IN count
if idstp[trk.id][0][1] < H // 2 and cy > H // 2 and trk.id not in idcnt:
incnt += 1
print("id: " + str(trk.id) + " - IN ")
idcnt.append(trk.id)
#OUT count
elif idstp[trk.id][0][1] > H // 2 and cy < H // 2 and trk.id not in idcnt:
outcnt += 1
print("id: " + str(trk.id) + " - OUT ")
idcnt.append(trk.id)
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2)
cv2.putText(img, "id: " + str(trk.id), (int(xmin) - 10, int(ymin) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
#Total, IN, OUT count & Line
cv2.putText(img, "Total: " + str(len(trackers)), (15, 25), cv2.FONT_HERSHEY_DUPLEX, 0.7, (255, 255, 255), 1)
cv2.line(img, (0, H // 2), (W, H // 2), (255, 0, 0), 3)
cv2.putText(img, "IN: " + str(incnt), (10, H // 2 - 10), cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(img, "OUT: " + str(outcnt), (10, H // 2 + 20), cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255), 1)
# create and initialise new trackers for unmatched detections
for i in unmatched_dets:
trk = KalmanBoxTracker(boxes[i, :])
trackers.append(trk)
trk.id = len(trackers)
#new tracker id & u, v
u, v = trk.kf.x[0], trk.kf.x[1]
idstp[trk.id].append([u, v])
if trk.time_since_update > max_age:
trackers.pop(i)
cv2.imshow("dst",img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
def gstreamer_pipeline(
capture_width=1280,
capture_height=720,
display_width=1280,
display_height=720,
framerate=60,
flip_method=0,
):
return (
"nvarguscamerasrc ! "
"video/x-raw(memory:NVMM), "
"width=(int)%d, height=(int)%d, "
"format=(string)NV12, framerate=(fraction)%d/1 ! "
"nvvidconv flip-method=%d ! "
"video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! "
"videoconvert ! "
"video/x-raw, format=(string)BGR ! appsink"
% (
capture_width,
capture_height,
framerate,
flip_method,
display_width,
display_height,
)
)
if __name__ == '__main__':
model = 'ssd_mobilenet_v1_coco'
cam = cv2.VideoCapture(gstreamer_pipeline(flip_method=0), cv2.CAP_GSTREAMER)
if not cam.isOpened():
raise SystemExit('ERROR: failed to open camera!')
cuda.init() # init pycuda driver
condition = threading.Condition()
trt_thread = TrtThread(condition, cam, model, conf_th=0.5)
trt_thread.start() # start the child thread
get_frame(condition)
trt_thread.stop() # stop the child thread
cam.release()
cv2.destroyAllWindows()