-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
61 lines (48 loc) · 1.61 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from pathlib import Path
import pickle
import os
from transformers import *
import streamlit as st
# Load pre-trained model
file_path = Path("text_classification_pipeline.pkl")
with open(file_path, 'rb') as file:
loaded_pipeline = pickle.load(file)
# Function to predict spam or ham
def predict_spam_or_ham(text):
prediction = loaded_pipeline.predict([text])[0]
return 'Spam' if prediction == 1 else 'Ham'
# Main function to create UI
def main():
# Set page title and icon
st.set_page_config(
page_title='Spam SMS Detection',
page_icon=":envelope_with_arrow:",
layout='wide'
)
# Set app title and description
st.title('Spam SMS Detection')
st.write("Welcome to the Spam SMS Detection App! Enter a message to classify whether it's spam or ham.")
# Text input area
text_to_classify = st.text_area("Enter SMS to Detect:", height=150)
# Classify button
if st.button("Detect", key='classify_button'):
# Display prediction
prediction = predict_spam_or_ham(text_to_classify)
if prediction=='Ham':
st.success(f"Prediction: {prediction}")
else:
st.error(f"Prediction: {prediction}")
# Add horizontal rule for separation
st.markdown("---")
# About section
st.sidebar.title("About")
st.sidebar.info(
"This app uses a machine learning model to classify SMS messages as either spam or ham. "
)
# Footer
st.sidebar.markdown("---")
st.sidebar.markdown(
"Developed by [Jaydeep Agravat](https://github.com/JaydeepAgravat)"
)
if __name__ == "__main__":
main()