forked from chandabindu/twobounce
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpoly.py
378 lines (308 loc) · 11.5 KB
/
poly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from math import sqrt, atan2
import math
# polyres = 0.01
# polyres = 0.15
# polyres = 0.05
polyres = 0.1
ANTICLOCKWISE_WARNING = True # If warning should be printed over clockwise definition, otherwise exception will be raised
class polyError(Exception):
def __init__(self, value=None):
self.value = value
def __str__(self):
return repr(self.value)
class face:
def __init__(
self, pt1, pt2, isDetector=False, isEthereal=False, notSource=False, parent=None
):
self.v1 = pt1
self.v2 = pt2
self.parent = parent
self.norm = self.calcnorm(pt1, pt2)
self.lit1 = [] # pairs between 0,1 which is lit
# of first order lighting
self.lit2 = [] # pairs between 0,1 which is lit
# of second order lighting
self.prob = [] # pairs between 0,1 which is lit
# and sees detector
self.isDetector = isDetector
self.isEthereal = isEthereal
self.notSource = notSource
self.length = sqrt((pt2[0] - pt1[0]) ** 2 + (pt2[1] - pt1[1]) ** 2)
def getlitfaces(self, order=1):
if order == 1:
litspan = self.lit1
if order == 2:
litspan = self.lit2
if order == 3:
litspan = self.prob
if len(litspan) == 0:
return ()
litfaces = []
for span in litspan:
startx = self.v1[0] * (1.0 - span[0]) + span[0] * self.v2[0]
starty = self.v1[1] * (1.0 - span[0]) + span[0] * self.v2[1]
stopx = self.v1[0] * (1.0 - span[1]) + span[1] * self.v2[0]
stopy = self.v1[1] * (1.0 - span[1]) + span[1] * self.v2[1]
litfaces.append(
face(
[startx, starty],
[stopx, stopy],
isDetector=self.isDetector,
notSource=self.notSource,
isEthereal=self.isEthereal,
parent=self,
)
)
return litfaces
def getpoint(self, z):
if self.length == 0:
return (self.v1[0], self.v2[0])
# Nudge these guys JUST a little to make corners
# better behaved
if z == 0.0:
z += polyres * 1e-6 / self.length
if z == 1.0:
z -= polyres * 1e-6 / self.length
x = self.v1[0] * (1.0 - z) + z * self.v2[0]
y = self.v1[1] * (1.0 - z) + z * self.v2[1]
return (x, y)
def isleft(self, pt):
# test if point is left of ray v1->v2
if (self.v1[0] - pt[0]) * self.norm[0] + (self.v1[1] - pt[1]) * self.norm[
1
] < 0.0:
return False
return True
def intersects(self, v1, v2=None):
if self.parent:
return self.parent.intersects(v1, v2)
if v2:
f = face(v1, v2)
else:
f = v1
test1 = self.isleft(f.v1)
test2 = self.isleft(f.v2)
# if both points are on one side we can't
# intersect
if test1 == test2:
return False
test3 = f.isleft(self.v1)
test4 = f.isleft(self.v2)
return test3 != test4
def calcnorm(self, pt1, pt2):
# normal unit vector for ray pt1->pt2
dx = pt2[1] - pt1[1]
dy = pt1[0] - pt2[0]
norm = sqrt(dx**2 + dy**2)
if norm == 0:
return [0, 0]
dx /= norm
dy /= norm
return [dx, dy]
def light(self, source, blocking, order):
# print "lighting ", self.v1, " -> ", self.v2, " with source ", source.v1, " -> ", source.v2
idxmax = int(self.length / polyres) + 1
currlit = False
for fidx in range(idxmax):
fz = fidx * polyres / self.length
blocked = True
curseesDet = False
for sidx in range(idxmax):
sz = sidx * polyres / self.length
anyBlockage = False
# Make sure the rays are on the correct sides
startpt = source.getpoint(sz)
stoppt = self.getpoint(fz)
if source.dotwithnorm(startpt, stoppt) <= 0.0:
anyBlockage = True
if self.dotwithnorm(startpt, stoppt) >= 0.0:
anyBlockage = True
# Faster to check this than all faces
# if self.islit( fz, order ):
# continue
if not anyBlockage:
for block in blocking:
if block.intersects(startpt, stoppt) and not block.isEthereal:
anyBlockage = True
break
if not anyBlockage:
if not curseesDet:
if self.isDetector:
startsee = sz
curseesDet = True
blocked = False
elif curseesDet:
curseesDet = False
if self.isDetector:
source.addlight(
startsee, sz, 3
) # Flag this region as problematic
if curseesDet:
if self.isDetector:
source.addlight(startsee, sz, 3) # Flag this region as problematic
if not blocked and not currlit:
currlit = True
startlight = fz
if blocked and currlit:
currlit = False
self.addlight(startlight, fz, order)
if currlit:
self.addlight(startlight, fz, order)
def addlight(self, z1, z2, order=1):
if self.parent:
self.parent.addlight(z1, z2, order)
if order == 1:
span = self.lit1
if order == 2:
span = self.lit2
if order == 3:
span = self.prob
if self.isEthereal:
print("Adding light ", z1, z2, " to ", span, "!")
added = False
for s in span:
if s[0] <= z1 and z1 <= s[1]:
if s[1] <= z2:
s[1] = z2
added = True
elif s[0] <= z2 and z2 <= s[1]:
if z1 <= s[0]:
s[0] = z1
added = True
elif s[0] <= z1 and z2 <= s[1]:
# envelopes the whole thing
s[0] = z1
s[1] = z2
added = True
if not added:
span.append([z1, z2])
def islit(self, z, order=1):
if self.parent:
if self.parent.islit(z, order):
return True
if order == 1:
span = self.lit1
if order == 2:
span = self.lit2
for s in span:
if s[0] <= z and z <= s[1]:
return True
return False
def dotwithnorm(self, p1, p2):
dotp = self.norm[0] * (p2[0] - p1[0]) + self.norm[1] * (p2[1] - p1[1])
return dotp
class polygon:
def __init__(self, pts, isDetector=False, isEthereal=False, notSource=False):
self.pts = pts
self.isAntiClockwise = self.antiClockwise(self.pts)
self.faces = self.makefaces(self.pts, isDetector, isEthereal, notSource)
self.ispoly()
def makefaces(self, pt, isDetector=False, isEthereal=False, notSource=False):
faces = []
for i in range(len(self.pts)):
faces.append(
face(self.pts[i - 1], self.pts[i], isDetector, isEthereal, notSource)
)
return faces
def intersects(self, l1, l2):
for face in self.faces:
if face.intersects(l1, l2):
return True
return False
def ispoly(self):
# Is polygon if no faces intersect
for idx in range(len(self.faces)):
thisface = self.faces[idx]
flist = []
# Ignore adjoining faces
if idx == 0:
flist += self.faces[idx + 2 : -1]
elif idx == len(self.faces) - 2:
flist += self.faces[:-3]
elif idx == len(self.faces) - 1:
flist += self.faces[1:-2]
else:
flist += self.faces[0 : idx - 1]
flist += self.faces[idx + 2 :]
for aface in flist:
if aface.intersects(thisface):
raise polyError()
return False
return True
def makeconvex(self, pts):
ordered = [pts.pop(0)]
stale = False
considered = []
while len(pts) > 0:
toconsider = pts.pop(0)
alltoleft = True
for apt in pts + ordered[:-1] + considered:
if not self.isleft(ordered[-1], toconsider, apt):
alltoleft = False
if not alltoleft:
considered.append(toconsider)
else:
ordered.append(toconsider)
pts += considered
considered = []
return ordered
def isconvexset(self, pts):
if len(pts) == len(self.makeconvex(list(pts))):
return True
return False
def getCentroid(self, pts):
x = [p[0] for p in pts]
y = [p[1] for p in pts]
return [sum(x) / len(x), sum(y) / len(y)]
def antiClockwise(self, pts):
center = self.getCentroid(pts)
getAngle = lambda p: atan2( # Define function to calculate between x axis and vector formed by the point and the centroid
p[1] - center[1], p[0] - center[0]
)
min_p = min(pts, key=getAngle) # get the value with the min angle
min_p_i = pts.index(min_p) # get the index of such point
rotate_arr = ( # Rotate the array so that the min point is in front
pts[min_p_i:] + pts[:min_p_i]
)
# Make sure the rotated array is always increasing. If not, the point are not defined in an anti-clockwise manner.
prev = getAngle(min_p) # Set initial value
for pt in rotate_arr[1:]:
if getAngle(pt) < prev:
if ANTICLOCKWISE_WARNING:
print(
"Warning: Geometry not anti-clockwise. Automatically fixing..."
)
else:
raise polyError("Points not defined in an anti-clockwise manner")
self.pts = sorted(pts, key=getAngle)
return False
prev = getAngle(pt)
return True
def light(self, sourcepolys, polys, order=1):
sourcefaces = []
polyfaces = []
for apoly in sourcepolys:
sourcefaces += apoly.faces
for apoly in polys:
polyfaces += apoly.faces
for fidx in range(len(self.faces)):
otherfaces = list(self.faces)
thisface = otherfaces.pop(fidx)
for sidx in range(len(sourcefaces)):
othersources = list(sourcefaces)
thissource = othersources.pop(sidx)
if (
thissource
and not thissource.isEthereal
and not thissource.isDetector
and not thissource.notSource
):
if order == 1:
thisface.light(
thissource, otherfaces + othersources + polyfaces, order
)
if order == 2:
for litface in thissource.getlitfaces(1):
thisface.light(
litface, otherfaces + othersources + polyfaces, order
)