forked from Cw-zero/TensorRT_yolo3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx_to_tensorrt.py
136 lines (115 loc) · 5.89 KB
/
onnx_to_tensorrt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from __future__ import print_function
import torch
import numpy as np
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
from PIL import ImageDraw
import time
from util import *
from data_processing import PreprocessYOLO
import sys, os
sys.path.insert(1, os.path.join(sys.path[0], ".."))
import common
TRT_LOGGER = trt.Logger()
def get_engine(onnx_file_path, engine_file_path=""):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
def build_engine():
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 30 # 1GB
builder.max_batch_size = 1
# Parse model file
if not os.path.exists(onnx_file_path):
print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
exit(0)
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
parser.parse(model.read())
print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
engine = builder.build_cuda_engine(network)
print("Completed creating Engine")
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
return engine
if os.path.exists(engine_file_path):
# If a serialized engine exists, use it instead of building an engine.
print("Reading engine from file {}".format(engine_file_path))
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
else:
return build_engine()
def main():
"""Create a TensorRT engine for ONNX-based YOLOv3-608 and run inference."""
# Try to load a previously generated YOLOv3-608 network graph in ONNX format:
onnx_file_path = 'yolov3-608.onnx'
engine_file_path = "yolov3-608.trt"
input_image_path = "./images/b.jpg"
# Two-dimensional tuple with the target network's (spatial) input resolution in HW ordered
input_resolution_yolov3_HW = (608, 608)
# Create a pre-processor object by specifying the required input resolution for YOLOv3
preprocessor = PreprocessYOLO(input_resolution_yolov3_HW)
# Load an image from the specified input path, and return it together with a pre-processed version
image_raw, image = preprocessor.process(input_image_path)
# Store the shape of the original input image in WH format, we will need it for later
shape_orig_WH = image_raw.size
# Output shapes expected by the post-processor
output_shapes = [(1, 255, 19, 19), (1, 255, 38, 38), (1, 255, 76, 76)]
# output_shapes = [(1, 255, 13, 13), (1, 255, 26, 26), (1, 255, 52, 52)]
# Do inference with TensorRT
trt_outputs = []
a = torch.cuda.FloatTensor()
average_inference_time = 0
average_yolo_time = 0
counter = 10
with get_engine(onnx_file_path, engine_file_path) as engine, engine.create_execution_context() as context:
inputs, outputs, bindings, stream = common.allocate_buffers(engine)
while counter:
# Do inference
print('Running inference on image {}...'.format(input_image_path))
# Set host input to the image. The common.do_inference function will copy the input to the GPU before executing.
inference_start = time.time()
inputs[0].host = image
trt_outputs = common.do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
inference_end = time.time()
inference_time = inference_end-inference_start
average_inference_time = average_inference_time + inference_time
print('inference time : %f' % (inference_end-inference_start))
# Do yolo_layer with pytorch
inp_dim = 608
num_classes = 80
CUDA = True
yolo_anchors = [[(116, 90), (156, 198), (373, 326)],
[(30, 61), (62, 45), (59, 119)],
[(10, 13), (16, 30), (33, 23)]]
write = 0
yolo_start = time.time()
for output, shape, anchors in zip(trt_outputs, output_shapes, yolo_anchors):
output = output.reshape(shape)
trt_output = torch.from_numpy(output).cuda()
trt_output = trt_output.data
trt_output = predict_transform(trt_output, inp_dim, anchors, num_classes, CUDA)
if type(trt_output) == int:
continue
if not write:
detections = trt_output
write = 1
else:
detections = torch.cat((detections, trt_output), 1)
dets = dynamic_write_results(detections, 0.5, num_classes, nms=True, nms_conf=0.45) #0.008
yolo_end = time.time()
yolo_time = yolo_end-yolo_start
average_yolo_time = average_yolo_time + yolo_time
print('yolo time : %f' % (yolo_end-yolo_start))
print('all time : %f' % (yolo_end-inference_start))
counter = counter -1
average_yolo_time = average_yolo_time/10
average_inference_time = average_inference_time/10
print("--------------------------------------------------------")
print('average yolo time : %f' % (average_yolo_time))
print('average inference time : %f' % (average_inference_time))
print("--------------------------------------------------------")
if __name__ == '__main__':
main()