-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_classifier.py
290 lines (237 loc) · 9.81 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python
import argparse
import os
import yaml
from utils import setup_seed
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import datasets
import models
import utils
import utils.few_shot as fs
from datasets.samplers import CategoriesSampler
def main(config):
svname = args.name
if svname is None:
svname = 'classifier_{}'.format(config['train_dataset']) # new_crop_color
svname += '_' + config['model_args']['encoder']
clsfr = config['model_args']['classifier']
if clsfr != 'linear-classifier':
svname += '-' + clsfr
if args.tag is not None:
svname += '_' + args.tag
save_path = os.path.join('./save', svname)
utils.ensure_path(save_path)
utils.set_log_path(save_path)
writer = SummaryWriter(os.path.join(save_path, 'tensorboard'))
yaml.dump(config, open(os.path.join(save_path, 'config.yaml'), 'w'))
#### Dataset ####
# train
train_dataset = datasets.make(config['train_dataset'],
**config['train_dataset_args'])
train_loader = DataLoader(train_dataset, config['batch_size'], shuffle=True,
num_workers=8, pin_memory=True)
utils.log('train dataset: {} (x{}), {}'.format(
train_dataset[0][0].shape, len(train_dataset),
train_dataset.n_classes), filename='{}_pretrain.txt'.format(config['train_dataset']))
if config.get('visualize_datasets'):
utils.visualize_dataset(train_dataset, 'train_dataset', writer)
# val
if config.get('val_dataset'):
eval_val = True
val_dataset = datasets.make(config['val_dataset'],
**config['val_dataset_args'])
val_loader = DataLoader(val_dataset, config['batch_size'],
num_workers=8, pin_memory=True)
utils.log('val dataset: {} (x{}), {}'.format(
val_dataset[0][0].shape, len(val_dataset),
val_dataset.n_classes), filename='{}_pretrain.txt'.format(config['train_dataset']))
if config.get('visualize_datasets'):
utils.visualize_dataset(val_dataset, 'val_dataset', writer)
else:
eval_val = False
# few-shot eval
if config.get('fs_dataset'):
ef_epoch = config.get('eval_fs_epoch')
if ef_epoch is None:
ef_epoch = 5
eval_fs = True
fs_dataset = datasets.make(config['fs_dataset'],
**config['fs_dataset_args'])
utils.log('fs dataset: {} (x{}), {}'.format(
fs_dataset[0][0].shape, len(fs_dataset),
fs_dataset.n_classes), filename='{}_pretrain.txt'.format(config['train_dataset']))
if config.get('visualize_datasets'):
utils.visualize_dataset(fs_dataset, 'fs_dataset', writer)
n_way = 5
n_query = 15
n_shots = [1, 5]
fs_loaders = []
for n_shot in n_shots:
fs_sampler = CategoriesSampler(
fs_dataset.label, 200,
n_way, n_shot + n_query, ep_per_batch=4)
fs_loader = DataLoader(fs_dataset, batch_sampler=fs_sampler,
num_workers=8, pin_memory=True)
fs_loaders.append(fs_loader)
else:
eval_fs = False
########
#### Model and Optimizer ####
if config.get('load'):
model_sv = torch.load(config['load'])
model = models.load(model_sv)
else:
model = models.make(config['model'], **config['model_args'])
model = model.cuda()
if eval_fs:
fs_model = models.make('meta-baseline', encoder=None)
fs_model.encoder = model.encoder
if config.get('_parallel'):
model = nn.DataParallel(model)
if eval_fs:
fs_model = nn.DataParallel(fs_model)
utils.log('num params: {}'.format(utils.compute_n_params(model)),
filename='{}_pretrain.txt'.format(config['train_dataset']))
optimizer, lr_scheduler = utils.make_optimizer(
model.parameters(),
config['optimizer'], **config['optimizer_args'])
########
max_epoch = config['max_epoch']
save_epoch = config.get('save_epoch')
max_va = 0.
timer_used = utils.Timer()
timer_epoch = utils.Timer()
for epoch in range(1, max_epoch + 1 + 1):
if epoch == max_epoch + 1:
if not config.get('epoch_ex'):
break
train_dataset.transform = train_dataset.default_transform
train_loader = DataLoader(
train_dataset, config['batch_size'], shuffle=True,
num_workers=8, pin_memory=True)
timer_epoch.s()
aves_keys = ['tl', 'ta', 'vl', 'va']
if eval_fs:
for n_shot in n_shots:
aves_keys += ['fsa-' + str(n_shot)]
aves = {k: utils.Averager() for k in aves_keys}
# train
model.train()
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], epoch)
for data, label in tqdm(train_loader, desc='train', leave=False):
data, label = data.cuda(), label.cuda()
logits = model(data)
loss = F.cross_entropy(logits, label)
acc = utils.compute_acc(logits, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
aves['tl'].add(loss.item())
aves['ta'].add(acc)
logits = None;
loss = None
# eval
if eval_val:
model.eval()
for data, label in tqdm(val_loader, desc='val', leave=False):
data, label = data.cuda(), label.cuda()
with torch.no_grad():
logits = model(data)
loss = F.cross_entropy(logits, label)
acc = utils.compute_acc(logits, label)
aves['vl'].add(loss.item())
aves['va'].add(acc)
if eval_fs and (epoch % ef_epoch == 0 or epoch == max_epoch + 1):
fs_model.eval()
for i, n_shot in enumerate(n_shots):
np.random.seed(0)
for data, _ in tqdm(fs_loaders[i],
desc='fs-' + str(n_shot), leave=False):
x_shot, x_query = fs.split_shot_query(
data.cuda(), n_way, n_shot, n_query, ep_per_batch=4)
label = fs.make_nk_label(
n_way, n_query, ep_per_batch=4).cuda()
with torch.no_grad():
logits = fs_model(x_shot, x_query).view(-1, n_way)
acc = utils.compute_acc(logits, label)
aves['fsa-' + str(n_shot)].add(acc)
# post
if lr_scheduler is not None:
lr_scheduler.step()
for k, v in aves.items():
aves[k] = v.item()
t_epoch = utils.time_str(timer_epoch.t())
t_used = utils.time_str(timer_used.t())
t_estimate = utils.time_str(timer_used.t() / epoch * max_epoch)
if epoch <= max_epoch:
epoch_str = str(epoch)
else:
epoch_str = 'ex'
log_str = 'epoch {}, train {:.4f}|{:.4f}'.format(
epoch_str, aves['tl'], aves['ta'])
writer.add_scalars('loss', {'train': aves['tl']}, epoch)
writer.add_scalars('acc', {'train': aves['ta']}, epoch)
if eval_val:
log_str += ', val {:.4f}|{:.4f}'.format(aves['vl'], aves['va'])
writer.add_scalars('loss', {'val': aves['vl']}, epoch)
writer.add_scalars('acc', {'val': aves['va']}, epoch)
if eval_fs and (epoch % ef_epoch == 0 or epoch == max_epoch + 1):
log_str += ', fs'
for n_shot in n_shots:
key = 'fsa-' + str(n_shot)
log_str += ' {}: {:.4f}'.format(n_shot, aves[key])
writer.add_scalars('acc', {key: aves[key]}, epoch)
if epoch <= max_epoch:
log_str += ', {} {}/{}'.format(t_epoch, t_used, t_estimate)
else:
log_str += ', {}'.format(t_epoch)
utils.log(log_str, filename='{}_pretrain.txt'.format(config['train_dataset']))
if config.get('_parallel'):
model_ = model.module
else:
model_ = model
training = {
'epoch': epoch,
'optimizer': config['optimizer'],
'optimizer_args': config['optimizer_args'],
'optimizer_sd': optimizer.state_dict(),
}
save_obj = {
'file': __file__,
'config': config,
'model': config['model'],
'model_args': config['model_args'],
'model_sd': model_.state_dict(),
'training': training,
}
if epoch <= max_epoch:
torch.save(save_obj, os.path.join(save_path, 'epoch-last.pth'))
if (save_epoch is not None) and epoch % save_epoch == 0:
torch.save(save_obj, os.path.join(
save_path, 'epoch-{}.pth'.format(epoch)))
if aves['va'] > max_va:
max_va = aves['va']
torch.save(save_obj, os.path.join(save_path, 'max-va.pth'))
else:
torch.save(save_obj, os.path.join(save_path, 'epoch-ex.pth'))
writer.flush()
if __name__ == '__main__':
setup_seed(2021)
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/train_classifier.yaml')
parser.add_argument('--name', default=None)
parser.add_argument('--tag', default=None)
parser.add_argument('--gpu', default='2,3')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.FullLoader)
if len(args.gpu.split(',')) > 1:
config['_parallel'] = True
config['_gpu'] = args.gpu
utils.set_gpu(args.gpu)
main(config)