- If you find a new paper about pedestrian detection, please feel free to contact us for adding it.
- If you find any error about performance, please feel free to contact us to fix it.
- Caltech test set
- Citypersons validation set
- Citypersons test set
- TJU-Ped-campus validation set
- TJU-Ped-traffic validation set
- KITTI test set
- KAIST test set
- The original annotations, while the bottom table uses the new annotations.
- CNN indicates whether or not deep features are used.
- P. Dollár, C. Wojek, B. Schiele, and P. Perona, Pedestrian Detection: An Evaluation of the State of the Art, IEEE TPAMI 2010.
Method | publication | CNN | R | HO | R+HO | A | link |
---|---|---|---|---|---|---|---|
ACF | PAMI2014 | no | 44.2 | 90.2 | 54.6 | 79.6 | Paper |
SpatialPooling | ECCV2014 | no | 29.2 | 84.1 | 41.7.6 | 74.0 | Paper |
LDCF | NIPS2014 | no | 24.8 | 81.3 | 37.7 | 71.2 | Paper |
Katamari | ECCV2014 | no | 22.5 | 84.4 | 36.2 | 71.3 | Paper |
DeepCascade | BMVC2015 | yes | 31.1 | 81.7 | 42.4 | 74.1 | Paper |
SCCPriors | BMVC2015 | no | 21.9 | 80.9 | 35.1 | 70.3 | Paper |
TA-CNN | CVPR2015 | no | 20.9 | 70.4 | 33.3 | 71.2 | Paper |
CCF | ICCV2015 | yes | 18.7 | 72.4 | 30.6 | 66.7 | Paper |
Checkerboards | ICCV2015 | yes | 18.5 | 77.5 | 31.8 | 68.7 | Paper |
DeepParts | ICCV2015 | yes | 11.9 | 60.4 | 22.8 | 64.8 | Paper |
CompACT-Deep | BMVC2015 | yes | 11.7 | 65.8 | 24.6 | 64.4 | Paper |
NNNF | CVPR2016 | no | 16.2 | 74.9 | - | - | Paper |
MS-CNN | ECCV2016 | yes | 10.0 | 59.9 | 21.5 | 60.9 | Paper |
RPN+BF | ECCV2016 | yes | 9.6 | 74.3 | 24.0 | 64.7 | Paper |
MCF | TIP2017 | yes | 10.4 | 66.7 | - | - | Paper |
F-DNN | WACV2017 | yes | 8.6 | 55.1 | 19.3 | 50.6 | Paper |
PCN | BMVC2017 | yes | 8.4 | 55.8 | 19.2 | 61.9 | Paper |
PDOE | ECCV2018 | yes | 7.6 | 44.4 | - | - | Paper |
UDN+ | PAMI2018 | yes | 11.5 | 70.3 | 24.7 | 64.8 | Paper |
FRCNN+ATT | CVPR2018 | yes | 10.3 | 45.2 | 18.2 | 54.5 | Paper |
SA-FRCNN | TMM2018 | yes | 9.7 | 64.4 | 21.9 | 62.6 | Paper |
ADM | TIP2018 | yes | 8.6 | 30.4 | 13.7 | 42.3 | Paper |
GDFL | ECCV2018 | yes | 7.8 | 43.2 | 15.6 | 48.1 | Paper |
TLL-TFA | ECCV2018 | yes | 7.4 | 28.7 | 12.3 | 38.2 | Paper |
AR-Ped | CVPR2019 | yes | 6.5 | 48.8 | 16.1 | 58.9 | Paper |
FRCNN+A+DT | ICCV2019 | yes | 8.0 | 37.9 | - | - | Paper |
MGAN | ICCV2019 | yes | 6.8 | 38.1 | 13.8 | - | Paper |
TFAN | CVPR2020 | yes | 6.7 | 30.9 | 12.4 | - | Paper |
Method | publication | CNN | R | HO | R+HO | A | link |
---|---|---|---|---|---|---|---|
HyperLearner | CVPR2017 | yes | 5.5 | - | - | - | Paper |
RepLoss | CVPR2018 | yes | 4.0 | - | - | - | Paper |
ALFNet | ECCV2018 | yes | 4.5 | - | - | - | Paper |
BGRNet | ACM-MM2020 | yes | 4.5 | - | - | - | Paper |
OR-CNN | ECCV2018 | yes | 4.1 | - | - | - | Paper |
HGPD | ACM-MM2020 | yes | 3.78 | - | - | - | Paper |
SML | ACMMM2020 | yes | 3.7 | - | - | - | Paper |
JointDet | AAAI2020 | yes | 3.0 | - | - | - | Paper |
PedHutter | AAAI2020 | yes | 2.3 | - | - | - | Paper |
- Usually, HO represents pedestrians over 50 pixels in height with 35-80% occlusion.
- † indicates the pedestrians over 50 pixels in height with more than 35% occlusion. Thus, † suggest higher difficulty.
- Shanshan Zhang, Rodrigo Benenson, Bernt Schiele, CityPersons: A Diverse Dataset for Pedestrian Detection, CVPR 2017.
Method | publication | scale | R | HO | link |
---|---|---|---|---|---|
Adapted FRCNN | CVPR2017 | 1.0x | 15.4 | - | Paper |
RepLoss | CVPR2018 | 1.0x | 13.7 | 56.9† | Paper |
FRCNN+ATT | CVPR2018 | 1.0x | 16.0 | 56.7 | Paper |
TLL+MRF | ECCV2018 | 1.0x | 14.4 | 52.0† | Paper |
OR-CNN | ECCV2018 | 1.0x | 12.8 | 55.7† | Paper |
ALFNet | ECCV2018 | 1.0x | 12.0 | 51.9† | Paper |
Cascade RCNN | CVPR2018 | 1.0x | 12.0 | 49.4 | Paper |
LBST | TIP2019 | 1.0x | 12.6 | 48.7 | Paper |
CSP | CVPR2019 | 1.0x | 11.0 | 49.3† | Paper |
Adaptive-NMS | CVPR2019 | 1.0x | 11.9 | 55.2† | Paper |
EGCL | arXiv2021 | 1.0x | 11.5 | 51.1† | Paper |
MGAN | ICCV2019 | 1.0x | 11.5 | 51.7 | Paper |
HGPD | ACM-MM2020 | 1.0x | 11.3 | 51.7 | Paper |
AutoPedestrian | TIP2021 | 1.0x | 11.3 | 50.5† | Paper |
R2NMS | CVPR2020 | 1.0x | 11.1 | 53.3 | Paper |
PRNet | ECCV2020 | 1.0x | 10.8 | 42.0 | Paper |
APD | TMM2021 | 1.0x | 10.6 | 46.6† | Paper |
CaSe | ECCV2020 | 1.0x | 11.0 | 50.3 | Paper |
SADet | ACM-MM2020 | 1.0x | 9.7 | 52.8† | Paper |
BGCNet | ACM-MM2020 | 1.0x | 9.4 | 45.9† | Paper |
Method | publication | scale | R | HO | link |
---|---|---|---|---|---|
Adapted FRCNN | CVPR2017 | 1.3x | 12.8 | - | Paper |
RepLoss | CVPR2018 | 1.3x | 11.6 | 55.3† | Paper |
OR-CNN | ECCV2018 | 1.3x | 11.0 | 51.3† | Paper |
PDOE | ECCV2018 | 1.3x | 11.2 | 44.2 | Paper |
LBST | TIP2019 | 1.3x | 11.4 | 45.2 | Paper |
FRCNN+A+DT | CVPR2019 | 1.3x | 11.1 | 44.3 | Paper |
Adaptive-NMS | CVPR2019 | 1.3x | 10.8 | 54.2† | Paper |
HGPD | ACM-MM2020 | 1.3x | 10.9 | 40.9 | Paper |
IoU+Sign | ICIP2019 | 1.3x | 10.8 | 54.3† | Paper |
NOH-NMS | ACM-MM2020 | 1.3x | 10.8 | 53.0† | Paper |
CrowdDet | CVPR2020 | 1.3x | 10.7 | - | Paper |
SML | ACMMM2020 | 1.3x | 10.6 | - | Paper |
EGCL | arXiv2021 | 1.3x | 10.5 | 45.3† | Paper |
MGAN | ICCV2019 | 1.3x | 10.3 | 49.6 | Paper |
AutoPedestrian | TIP2021 | 1.3x | 10.3 | 49.4† | Paper |
CaSe | ECCV2020 | 1.3x | 9.6 | 48.2 | Paper |
JointDet | CVPR2019 | 1.3x | 10.2 | - | Paper |
0.5-stage | WACV2020 | 1.3x | 8.1 | - | Paper |
PedHutter | AAAI2020 | 1.3x | 8.3 | 43.5† | Paper |
- Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele, CityPersons: A Diverse Dataset for Pedestrian Detection, CVPR 2017.
Method | publication | R | RS | HO | A | link |
---|---|---|---|---|---|---|
MS-CNN | ECCV2016 | 13.32 | 15.86 | 51.88 | 39.94 | Paper |
Adapted FRCNN | CVPR2017 | 12.97 | 37.24 | 50.47 | 43.86 | Paper |
Cascade MS-CNN | CVPR2018 | 11.62 | 13.64 | 47.14 | 37.63 | Paper |
RepLoss | CVPR2018 | 11.48 | 15.67 | 52.59 | 39.17 | Paper |
Adaptive-NMS | CVPR2019 | 11.40 | 13.64 | 46.99 | 38.89 | Paper |
OR-CNN | ECCV2018 | 11.32 | 14.19 | 51.43 | 40.19 | Paper |
MHN | TMM2019 | 12.92 | 17.24 | 46.72 | 39.16 | Paper |
HBA-RCNN | - | 11.26 | 15.68 | 39.54 | 38.77 | - |
DVRNet | - | 10.99 | 15.68 | 43.77 | 41.48 | - |
HGPD | ACM-MM2020 | 10.17 | - | 38.65 | 38.24 | Paper |
MGAN | ICCV2019 | 9.29 | 11.38 | 40.97 | 38.86 | Paper |
STNet | - | 8.92 | 11.13 | 34.31 | 29.54 | - |
YT-PedDet | - | 8.41 | 10.60 | 37.88 | 37.22 | - |
APD | arXiv2019 | 8.27 | 11.03 | 35.45 | 35.65 | Paper |
Pedestron | arXiv2020 | 7.69 | 9.16 | 27.08 | 28.33 | Paper |
- RS represents the pedestrians over 50 pixels and under 75 pixels with less than 0.35 occlusion, while A the pedestrians over 20 pixels with less than 0.8 occlusion.
- Yanwei Pang, Jiale Cao, Yazhao Li, Jin Xie, Hanqing Sun, and Jinfeng Gong, TJU-DHD: A Diverse High-Resolution Dataset for Object Detection, IEEE TIP2021.
Method | publication | R | RS | HO | R+HO | A | link |
---|---|---|---|---|---|---|---|
RetinaNet | ICCV2017 | 34.73 | 82.99 | 71.31 | 42.26 | 44.34 | Paper |
FCOS | ICCV2019 | 31.89 | 69.04 | 81.28 | 39.38 | 41.62 | Paper |
FPN | ICCV2017 | 27.92 | 67.52 | 73.14 | 35.67 | 38.08 | Paper |
CrowdDet | CVPR2020 | 25.73 | - | 66.38 | 33.63 | 35.90 | Paper |
EGCL | arXiv2021 | 24.84 | - | 65.27 | 32.39 | 34.87 | Paper |
- Yanwei Pang, Jiale Cao, Yazhao Li, Jin Xie, Hanqing Sun, Jinfeng Gong, TJU-DHD: A Diverse High-Resolution Dataset for Object Detection, IEEE TIP2021.
Method | publication | R | RS | HO | R+HO | A | link |
---|---|---|---|---|---|---|---|
RetinaNet | ICCV2017 | 23.89 | 37.92 | 61.60 | 28.45 | 41.40 | Paper |
FCOS | ICCV2019 | 24.35 | 37.40 | 63.73 | 28.86 | 40.02 | Paper |
FPN | ICCV2017 | 22.30 | 35.19 | 60.30 | 26.71 | 37.78 | Paper |
CrowdDet | CVPR2020 | 20.82 | - | 61.22 | 25.28 | 36.94 | Paper |
EGCL | arXiv2021 | 19.73 | - | 60.05 | 24.19 | 35.76 | Paper |
- Andreas Geiger, Philip Lenz, and Raquel Urtasun, Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite, CVPR 2012.
Method | publication | Medium | Easy | Hard | link |
---|---|---|---|---|---|
ACF | PAMI2014 | 39.81 | 44.49 | 37.21 | Paper |
Checkerboards | CVPR2015 | 56.75 | 67.65 | 51.12 | Paper |
DeepParts | ICCV2015 | 58.67 | 70.49 | 52.78 | Paper |
CompACT-Deep | ICCV2015 | 58.74 | 70.69 | 52.71 | Paper |
Regionlets | PAMI2015 | 60.83 | 73.79 | 54.72 | Paper |
NNNF | CVPR2016 | 58.01 | 69.16 | 52.77 | Paper |
MCF | TIP2016 | 59.45 | 70.87 | 54.28 | Paper |
RPN+BF | ECCV2016 | 61.29 | 75.45 | 56.08 | Paper |
SDP+RPN | CVPR2016 | 70.42 | 82.07 | 65.09 | Paper |
IVA | ACCV2016 | 71.37 | 84.61 | 64.90 | Paper |
MS-CNN | ECCV2016 | 74.89 | 85.71 | 68.99 | Paper |
SubCNN | WACV2017 | 72.77 | 84.88 | 66.82 | Paper |
PCN | BMVC2017 | 63.41 | 80.08 | 58.55 | Paper |
GN | PRL2017 | 72.29 | 82.93 | 65.56 | Paper |
RRC | CVPR2017 | 76.61 | 85.98 | 71.47 | Paper |
CFM | TCSVT2018 | 62.84 | 74.76 | 56.06 | Paper |
SAF R-CNN | TMM2018 | 65.01 | 77.93 | 60.42 | Paper |
SJTU-HW | ICIP2018 | 75.81 | 87.17 | 69.86 | Paper |
GDFL | ECCV2018 | 68.62 | 84.61 | 66.86 | Paper |
MonoPSR | CVPR2019 | 68.56 | 85.60 | 63.34 | Paper |
FFNet | PR2019 | 75.99 | 87.21 | 69.86 | Paper |
MHN | TCSVT2019 | 75.99 | 87.21 | 69.50 | Paper |
Aston-EAS | TITS2019 | 76.07 | 86.71 | 70.02 | Paper |
AR-Ped | CVPR2019 | 73.44 | 83.66 | 68.12 | Paper |
- Soonmin Hwang, Jaesik Park, Namil Kim, Yukyung Choi, and In So Kweon, Multispectral Pedestrian Detection: Benchmark Dataset and Baselines, CVPR 2015.
Method | publication | MR(All) | MR(Day) | MR(Nighy) | link |
---|---|---|---|---|---|
ACF | CVPR2015 | 47.32 | 42.57 | 56.17 | Paper |
Halfway Fusion | BMVC2016 | 25.75 | 24.88 | 26.59 | Paper |
IAF-RCNN | PR2019 | 15.73 | 14.55 | 18.26 | Paper |
IATDNN+IAMSS | IF2019 | 14.95 | 14.67 | 15.72 | Paper |
CIAN | IF2019 | 14.12 | 14.77 | 11.13 | Paper |
MSDS-RCNN | BMVC2018 | 11.34 | 10.53 | 12.94 | Paper |
AR-CNN | ICCV2019 | 9.34 | 9.94 | 8.38 | Paper |
MBNet | ECCV2020 | 8.13 | 8.28 | 7.86 | Paper |
SCDN | ArXiv2021 | 8.07 | 8.16 | 7.51 | Paper |
UGCML | TCSVT2022 | 7.89 | 8.18 | 6.96 | Paper |