-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathKM_rendering.py
47 lines (32 loc) · 1.55 KB
/
KM_rendering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import PIL.Image as Image
import sys,os
from Constant_Values import *
from KS_helper import *
def KM_mixing_rendering(H, W, img):
shape=img.shape
N=shape[0]*shape[1]
M=H.shape[0]
L=H.shape[1]/2
W=W.reshape((-1,M))
### reconstruction of input
R_vector=KM_mixing_multiplepigments(H[:,:L], H[:,L:], W, r=np.ones((N,L)), h=np.ones((N,1))) ## r should be (N*L)shape. h should be (N*1)shape
P_vector=R_vector*Illuminantnew[:,1].reshape((1,-1)) ### shape is N*L
R_xyz=(P_vector.reshape((-1,1,L))*R_xyzcoeff.reshape((1,3,L))).sum(axis=2) ###shape N*3*L to shape N*3
Normalize=(Illuminantnew[:,1]*R_xyzcoeff[1,:]).sum() ### scalar value.
R_xyz=R_xyz/Normalize ####xyz value shape is N*3
R_rgb=np.dot(xyztorgb,R_xyz.transpose()).transpose() ###linear rgb value, shape is N*3
R_rgb=Gamma_trans_img(R_rgb.clip(0,1)) ##clip and gamma correction
R_rgb=R_rgb.reshape(shape) ### reshape to same shape as target img.
return (R_rgb*255).round().astype(np.uint8)
###command: python KM_rendering.py img.png pigments.txt mixing_weights.txt
if __name__=="__main__":
img_name=sys.argv[1] #### only used to give image shape.
pigments_KS_name=sys.argv[2] #### primary pigments KS.
weights_name=sys.argv[3] #### mixing weights txt file.
output_path=sys.argv[4]
img=np.asarray(Image.open(img_name).convert('RGB'))
H=np.loadtxt(pigments_KS_name)
Weights=np.loadtxt(weights_name)
rendered_img=KM_mixing_rendering(H,Weights,img)
Image.fromarray(rendered_img).save(output_path)