-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathSILD_convexhull_simplification.py
391 lines (265 loc) · 13.5 KB
/
SILD_convexhull_simplification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#####directly copy from SILD_convexhull_simplification-minimize_adding_volume_or_normalized_adding_volume.ipynb 2016.01.11
#### and then remove many unrelated codes.
import numpy as np
from scipy.spatial import ConvexHull
from scipy.spatial import Delaunay
from scipy.optimize import *
from math import *
import cvxopt
import PIL.Image as Image
import sys
######***********************************************************************************************
#### 3D case: use method in paper: "Progressive Hulls for Intersection Applications"
#### also using trimesh.py interface from yotam gingold
def visualize_hull(hull,groundtruth_hull=None):
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(1,1,1, projection='3d')
vertex=hull.points[hull.vertices]
ax.scatter(vertex[:,0], vertex[:,1], vertex[:,2],
marker='*', color='red', s=40, label='class')
# num=hull.simplices.shape[0]
# points=[]
# normals=[]
# for i in range(num):
# face=hull.points[hull.simplices[i]]
# avg_point=(face[0]+face[1]+face[2])/3.0
# points.append(avg_point)
# points=np.asarray(points)
# ax.quiver(points[:,0],points[:,1],points[:,2],hull.equations[:,0],hull.equations[:,1],hull.equations[:,2],length=0.01)
for simplex in hull.simplices:
faces=hull.points[simplex]
xs=list(faces[:,0])
xs.append(faces[0,0])
ys=list(faces[:,1])
ys.append(faces[0,1])
zs=list(faces[:,2])
zs.append(faces[0,2])
# print xs,ys,zs
plt.plot(xs,ys,zs,'k-')
if groundtruth_hull!=None:
groundtruth_vertex=groundtruth_hull.points[groundtruth_hull.vertices]
ax.scatter(groundtruth_vertex[:,0], groundtruth_vertex[:,1], groundtruth_vertex[:,2],
marker='o', color='green', s=80, label='class')
plt.title("3D Scatter Plot")
plt.show()
from trimesh import TriMesh
def write_convexhull_into_obj_file(hull, output_rawhull_obj_file):
hvertices=hull.points[hull.vertices]
points_index=-1*np.ones(hull.points.shape[0],dtype=int)
points_index[hull.vertices]=np.arange(len(hull.vertices))
#### start from index 1 in obj files!!!!!
hfaces=np.array([points_index[hface] for hface in hull.simplices])+1
#### to make sure each faces's points are countclockwise order.
for index in range(len(hfaces)):
face=hvertices[hfaces[index]-1]
normals=hull.equations[index,:3]
p0=face[0]
p1=face[1]
p2=face[2]
n=np.cross(p1-p0,p2-p0)
if np.dot(normals,n)<0:
hfaces[index][[1,0]]=hfaces[index][[0,1]]
myfile=open(output_rawhull_obj_file,'w')
for index in range(hvertices.shape[0]):
myfile.write('v '+str(hvertices[index][0])+' '+str(hvertices[index][1])+' '+str(hvertices[index][2])+'\n')
for index in range(hfaces.shape[0]):
myfile.write('f '+str(hfaces[index][0])+' '+str(hfaces[index][1])+' '+str(hfaces[index][2])+'\n')
myfile.close()
def edge_normal_test(vertices, faces, old_face_index_list, v0_ind, v1_ind):
selected_old_face_list=[]
central_two_face_list=[]
for index in old_face_index_list:
face=faces[index]
face_temp=np.array(face).copy()
face_temp=list(face_temp)
if v0_ind in face_temp:
face_temp.remove(v0_ind)
if v1_ind in face_temp:
face_temp.remove(v1_ind)
if len(face_temp)==2: ### if left 2 points, then this face is what we need.
selected_old_face=[np.asarray(vertices[face[i]]) for i in range(len(face))]
selected_old_face_list.append(np.asarray(selected_old_face))
if len(face_temp)==1: ##### if left 1 points, then this face is central face.
central_two_face=[np.asarray(vertices[face[i]]) for i in range(len(face))]
central_two_face_list.append(np.asarray(central_two_face))
assert( len(central_two_face_list)==2 )
if len(central_two_face_list)+len(selected_old_face_list)!=len(old_face_index_list):
print 'error!!!!!!'
central_two_face_normal_list=[]
neighbor_face_dot_normal_list=[]
for face in central_two_face_list:
n=np.cross(face[1]-face[0], face[2]-face[0])
n=n/np.sqrt(np.dot(n,n))
central_two_face_normal_list.append(n)
avg_edge_normal=np.average(np.array(central_two_face_normal_list),axis=0)
for face in selected_old_face_list:
n=np.cross(face[1]-face[0], face[2]-face[0])
neighbor_face_dot_normal_list.append(np.dot(avg_edge_normal,n))
if (np.array(neighbor_face_dot_normal_list)>=0.0-1e-5).all():
return 1
else:
return 0
def compute_tetrahedron_volume(face, point):
n=np.cross(face[1]-face[0], face[2]-face[0])
return abs(np.dot(n, point-face[0]))/6.0
#### this is different from function: remove_one_edge_by_finding_smallest_adding_volume(mesh)
#### add some test conditions to accept new vertex.
#### if option ==1, return a new convexhull.
#### if option ==2, return a new mesh (using trimesh.py)
def remove_one_edge_by_finding_smallest_adding_volume_with_test_conditions(mesh, option):
edges=mesh.get_edges()
mesh.get_halfedges()
faces=mesh.faces
vertices=mesh.vs
temp_list1=[]
temp_list2=[]
count=0
for edge_index in range(len(edges)):
edge=edges[edge_index]
vertex1=edge[0]
vertex2=edge[1]
face_index1=mesh.vertex_face_neighbors(vertex1)
face_index2=mesh.vertex_face_neighbors(vertex2)
face_index=list(set(face_index1) | set(face_index2))
related_faces=[faces[index] for index in face_index]
old_face_list=[]
#### now find a point, so that for each face in related_faces will create a positive volume tetrahedron using this point.
### minimize c*x. w.r.t. A*x<=b
c=np.zeros(3)
A=[]
b=[]
for index in range(len(related_faces)):
face=related_faces[index]
p0=vertices[face[0]]
p1=vertices[face[1]]
p2=vertices[face[2]]
old_face_list.append(np.asarray([p0,p1,p2]))
n=np.cross(p1-p0,p2-p0)
#### Currently use this line. without this line, test_fourcolors results are not good.
n=n/np.sqrt(np.dot(n,n)) ##### use normalized face normals means distance, not volume
A.append(n)
b.append(np.dot(n,p0))
c+=n
########### now use cvxopt.solvers.lp solver
A=-np.asfarray(A)
b=-np.asfarray(b)
c=np.asfarray(c)
cvxopt.solvers.options['show_progress'] = False
cvxopt.solvers.options['glpk'] = dict(msg_lev='GLP_MSG_OFF')
res = cvxopt.solvers.lp( cvxopt.matrix(c), cvxopt.matrix(A), cvxopt.matrix(b), solver='glpk' )
if res['status']=='optimal':
newpoint = np.asfarray( res['x'] ).squeeze()
######## using objective function to calculate (volume) or (distance to face) as priority.
# volume=res['primal objective']+b.sum()
####### manually compute volume as priority,so no relation with objective function
tetra_volume_list=[]
for each_face in old_face_list:
tetra_volume_list.append(compute_tetrahedron_volume(each_face,newpoint))
volume=np.asarray(tetra_volume_list).sum()
temp_list1.append((count, volume, vertex1, vertex2))
temp_list2.append(newpoint)
count+=1
else:
# print 'cvxopt.solvers.lp is not optimal ', res['status'], np.asfarray( res['x'] ).squeeze()
if res['status']!='unknown': ### means solver failed
##### check our test to see if the solver fails normally
if edge_normal_test(vertices,faces,face_index,vertex1,vertex2)==1: ### means all normal dot value are positive
print '!!!edge_normal_neighbor_normal_dotvalue all positive, but solver fails'
if option==1:
if len(temp_list1)==0:
print 'all fails'
hull=ConvexHull(mesh.vs)
else:
min_tuple=min(temp_list1,key=lambda x: x[1])
# print min_tuple
final_index=min_tuple[0]
final_point=temp_list2[final_index]
# print 'final_point ', final_point
new_total_points=mesh.vs
new_total_points.append(final_point)
hull=ConvexHull(np.array(new_total_points))
return hull
if option==2:
if len(temp_list1)==0:
print 'all fails'
else:
min_tuple=min(temp_list1,key=lambda x: x[1])
# print min_tuple
final_index=min_tuple[0]
final_point=temp_list2[final_index]
# print 'final_point ', final_point
v1_ind=min_tuple[2]
v2_ind=min_tuple[3]
face_index1=mesh.vertex_face_neighbors(v1_ind)
face_index2=mesh.vertex_face_neighbors(v2_ind)
face_index=list(set(face_index1) | set(face_index2))
related_faces_vertex_ind=[faces[index] for index in face_index]
old2new=mesh.remove_vertex_indices([v1_ind, v2_ind])
### give the index to new vertex.
new_vertex_index=current_vertices_num=len(old2new[old2new!=-1])
### create new face with new vertex index.
new_faces_vertex_ind=[]
for face in related_faces_vertex_ind:
new_face=[new_vertex_index if x==v1_ind or x==v2_ind else old2new[x] for x in face]
if len(list(set(new_face)))==len(new_face):
new_faces_vertex_ind.append(new_face)
##### do not clip coordinates to[0,255]. when simplification done, clip.
mesh.vs.append(final_point)
##### clip coordinates during simplification!
# mesh.vs.append(final_point.clip(0.0,255.0))
for face in new_faces_vertex_ind:
mesh.faces.append(face)
mesh.topology_changed()
return mesh
############### using original image as input###############
if __name__=="__main__":
input_image_path=sys.argv[1]+".png"
output_rawhull_obj_file=sys.argv[1]+"-rawconvexhull.obj"
js_output_file=sys.argv[1]+"-final_simplified_hull.js"
js_output_clip_file=sys.argv[1]+"-final_simplified_hull_clip.js"
js_output_file_origin=sys.argv[1]+"-original_hull.js"
E_vertice_num=4
import time
start_time=time.clock()
images=np.asfarray(Image.open(input_image_path).convert('RGB')).reshape((-1,3))
hull=ConvexHull(images)
origin_hull=hull
# visualize_hull(hull)
write_convexhull_into_obj_file(hull, output_rawhull_obj_file)
N=500
mesh=TriMesh.FromOBJ_FileName(output_rawhull_obj_file)
print 'original vertices number:',len(mesh.vs)
for i in range(N):
print 'loop:', i
old_num=len(mesh.vs)
mesh=TriMesh.FromOBJ_FileName(output_rawhull_obj_file)
mesh=remove_one_edge_by_finding_smallest_adding_volume_with_test_conditions(mesh,option=2)
newhull=ConvexHull(mesh.vs)
write_convexhull_into_obj_file(newhull, output_rawhull_obj_file)
print 'current vertices number:', len(mesh.vs)
if len(newhull.vertices) <= 10:
import json, os
name = os.path.splitext( js_output_file )[0] + ( '-%02d.js' % len(newhull.vertices ))
with open( name, 'w' ) as myfile:
json.dump({'vs': newhull.points[ newhull.vertices ].tolist(),'faces': newhull.points[ newhull.simplices ].tolist()}, myfile, indent = 4 )
name = os.path.splitext( js_output_clip_file )[0] + ( '-%02d.js' % len(newhull.vertices ))
with open( name, 'w' ) as myfile:
json.dump({'vs': newhull.points[ newhull.vertices ].clip(0.0,255.0).tolist(),'faces': newhull.points[ newhull.simplices ].clip(0.0,255.0).tolist()}, myfile, indent = 4 )
pigments_colors=newhull.points[ newhull.vertices ].clip(0,255).round().astype(np.uint8)
pigments_colors=pigments_colors.reshape((pigments_colors.shape[0],1,pigments_colors.shape[1]))
Image.fromarray( pigments_colors ).save( os.path.splitext( js_output_clip_file )[0] + ( '-%02d.png' % len(newhull.vertices )) )
if len(mesh.vs)==old_num or len(mesh.vs)<=E_vertice_num:
print 'final vertices number', len(mesh.vs)
break
newhull=ConvexHull(mesh.vs)
# visualize_hull(newhull)
write_convexhull_into_obj_file(newhull, output_rawhull_obj_file)
print newhull.points[newhull.vertices]
# import json
# with open( js_output_file, 'w' ) as myfile:
# json.dump({'vs': newhull.points[ newhull.vertices ].tolist(),'faces': newhull.points[ newhull.simplices ].tolist()}, myfile, indent = 4 )
with open( js_output_file_origin, 'w' ) as myfile_origin:
json.dump({'vs': origin_hull.points[ origin_hull.vertices ].tolist(),'faces': origin_hull.points[ origin_hull.simplices ].tolist()}, myfile_origin, indent = 4 )
end_time=time.clock()
print 'time: ', end_time-start_time