-
Notifications
You must be signed in to change notification settings - Fork 149
/
loss_functions.py
executable file
·206 lines (150 loc) · 7.57 KB
/
loss_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from __future__ import division
import torch
from torch import nn
import torch.nn.functional as F
from inverse_warp import inverse_warp2, inverse_warp
import math
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
class SSIM(nn.Module):
"""Layer to compute the SSIM loss between a pair of images
"""
def __init__(self):
super(SSIM, self).__init__()
self.mu_x_pool = nn.AvgPool2d(3, 1)
self.mu_y_pool = nn.AvgPool2d(3, 1)
self.sig_x_pool = nn.AvgPool2d(3, 1)
self.sig_y_pool = nn.AvgPool2d(3, 1)
self.sig_xy_pool = nn.AvgPool2d(3, 1)
self.refl = nn.ReflectionPad2d(1)
self.C1 = 0.01 ** 2
self.C2 = 0.03 ** 2
def forward(self, x, y):
x = self.refl(x)
y = self.refl(y)
mu_x = self.mu_x_pool(x)
mu_y = self.mu_y_pool(y)
sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2
sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2
sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y
SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2)
SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2)
return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1)
compute_ssim_loss = SSIM().to(device)
# photometric loss
# geometry consistency loss
def compute_photo_and_geometry_loss(tgt_img, ref_imgs, intrinsics, tgt_depth, ref_depths, poses, poses_inv, max_scales, with_ssim, with_mask, with_auto_mask, padding_mode):
photo_loss = 0
geometry_loss = 0
num_scales = min(len(tgt_depth), max_scales)
for ref_img, ref_depth, pose, pose_inv in zip(ref_imgs, ref_depths, poses, poses_inv):
for s in range(num_scales):
# # downsample img
# b, _, h, w = tgt_depth[s].size()
# downscale = tgt_img.size(2)/h
# if s == 0:
# tgt_img_scaled = tgt_img
# ref_img_scaled = ref_img
# else:
# tgt_img_scaled = F.interpolate(tgt_img, (h, w), mode='area')
# ref_img_scaled = F.interpolate(ref_img, (h, w), mode='area')
# intrinsic_scaled = torch.cat((intrinsics[:, 0:2]/downscale, intrinsics[:, 2:]), dim=1)
# tgt_depth_scaled = tgt_depth[s]
# ref_depth_scaled = ref_depth[s]
# upsample depth
b, _, h, w = tgt_img.size()
tgt_img_scaled = tgt_img
ref_img_scaled = ref_img
intrinsic_scaled = intrinsics
if s == 0:
tgt_depth_scaled = tgt_depth[s]
ref_depth_scaled = ref_depth[s]
else:
tgt_depth_scaled = F.interpolate(tgt_depth[s], (h, w), mode='nearest')
ref_depth_scaled = F.interpolate(ref_depth[s], (h, w), mode='nearest')
photo_loss1, geometry_loss1 = compute_pairwise_loss(tgt_img_scaled, ref_img_scaled, tgt_depth_scaled, ref_depth_scaled, pose,
intrinsic_scaled, with_ssim, with_mask, with_auto_mask, padding_mode)
photo_loss2, geometry_loss2 = compute_pairwise_loss(ref_img_scaled, tgt_img_scaled, ref_depth_scaled, tgt_depth_scaled, pose_inv,
intrinsic_scaled, with_ssim, with_mask, with_auto_mask, padding_mode)
photo_loss += (photo_loss1 + photo_loss2)
geometry_loss += (geometry_loss1 + geometry_loss2)
return photo_loss, geometry_loss
def compute_pairwise_loss(tgt_img, ref_img, tgt_depth, ref_depth, pose, intrinsic, with_ssim, with_mask, with_auto_mask, padding_mode):
ref_img_warped, valid_mask, projected_depth, computed_depth = inverse_warp2(ref_img, tgt_depth, ref_depth, pose, intrinsic, padding_mode)
diff_img = (tgt_img - ref_img_warped).abs().clamp(0, 1)
diff_depth = ((computed_depth - projected_depth).abs() / (computed_depth + projected_depth)).clamp(0, 1)
if with_auto_mask == True:
auto_mask = (diff_img.mean(dim=1, keepdim=True) < (tgt_img - ref_img).abs().mean(dim=1, keepdim=True)).float() * valid_mask
valid_mask = auto_mask
if with_ssim == True:
ssim_map = compute_ssim_loss(tgt_img, ref_img_warped)
diff_img = (0.15 * diff_img + 0.85 * ssim_map)
if with_mask == True:
weight_mask = (1 - diff_depth)
diff_img = diff_img * weight_mask
# compute all loss
reconstruction_loss = mean_on_mask(diff_img, valid_mask)
geometry_consistency_loss = mean_on_mask(diff_depth, valid_mask)
return reconstruction_loss, geometry_consistency_loss
# compute mean value given a binary mask
def mean_on_mask(diff, valid_mask):
mask = valid_mask.expand_as(diff)
if mask.sum() > 10000:
mean_value = (diff * mask).sum() / mask.sum()
else:
mean_value = torch.tensor(0).float().to(device)
return mean_value
def compute_smooth_loss(tgt_depth, tgt_img, ref_depths, ref_imgs):
def get_smooth_loss(disp, img):
"""Computes the smoothness loss for a disparity image
The color image is used for edge-aware smoothness
"""
# normalize
mean_disp = disp.mean(2, True).mean(3, True)
norm_disp = disp / (mean_disp + 1e-7)
disp = norm_disp
grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])
grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)
grad_disp_x *= torch.exp(-grad_img_x)
grad_disp_y *= torch.exp(-grad_img_y)
return grad_disp_x.mean() + grad_disp_y.mean()
loss = get_smooth_loss(tgt_depth[0], tgt_img)
for ref_depth, ref_img in zip(ref_depths, ref_imgs):
loss += get_smooth_loss(ref_depth[0], ref_img)
return loss
@torch.no_grad()
def compute_errors(gt, pred, dataset):
abs_diff, abs_rel, sq_rel, a1, a2, a3 = 0, 0, 0, 0, 0, 0
batch_size, h, w = gt.size()
'''
crop used by Garg ECCV16 to reprocude Eigen NIPS14 results
construct a mask of False values, with the same size as target
and then set to True values inside the crop
'''
if dataset == 'kitti':
crop_mask = gt[0] != gt[0]
y1, y2 = int(0.40810811 * gt.size(1)), int(0.99189189 * gt.size(1))
x1, x2 = int(0.03594771 * gt.size(2)), int(0.96405229 * gt.size(2))
crop_mask[y1:y2, x1:x2] = 1
max_depth = 80
if dataset == 'nyu':
crop_mask = gt[0] != gt[0]
y1, y2 = int(0.09375 * gt.size(1)), int(0.98125 * gt.size(1))
x1, x2 = int(0.0640625 * gt.size(2)), int(0.9390625 * gt.size(2))
crop_mask[y1:y2, x1:x2] = 1
max_depth = 10
for current_gt, current_pred in zip(gt, pred):
valid = (current_gt > 0.1) & (current_gt < max_depth)
valid = valid & crop_mask
valid_gt = current_gt[valid]
valid_pred = current_pred[valid].clamp(1e-3, max_depth)
valid_pred = valid_pred * torch.median(valid_gt)/torch.median(valid_pred)
thresh = torch.max((valid_gt / valid_pred), (valid_pred / valid_gt))
a1 += (thresh < 1.25).float().mean()
a2 += (thresh < 1.25 ** 2).float().mean()
a3 += (thresh < 1.25 ** 3).float().mean()
abs_diff += torch.mean(torch.abs(valid_gt - valid_pred))
abs_rel += torch.mean(torch.abs(valid_gt - valid_pred) / valid_gt)
sq_rel += torch.mean(((valid_gt - valid_pred)**2) / valid_gt)
return [metric.item() / batch_size for metric in [abs_diff, abs_rel, sq_rel, a1, a2, a3]]