forked from microsoft/Swin-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_simmim.py
209 lines (166 loc) · 8.22 KB
/
utils_simmim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# --------------------------------------------------------
# SimMIM
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# Modified by Zhenda Xie
# --------------------------------------------------------
import os
import torch
import torch.distributed as dist
import numpy as np
from scipy import interpolate
def load_checkpoint(config, model, optimizer, lr_scheduler, scaler, logger):
logger.info(f">>>>>>>>>> Resuming from {config.MODEL.RESUME} ..........")
if config.MODEL.RESUME.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
config.MODEL.RESUME, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
# re-map keys due to name change (only for loading provided models)
rpe_mlp_keys = [k for k in checkpoint['model'].keys() if "rpe_mlp" in k]
for k in rpe_mlp_keys:
checkpoint['model'][k.replace('rpe_mlp', 'cpb_mlp')] = checkpoint['model'].pop(k)
msg = model.load_state_dict(checkpoint['model'], strict=False)
logger.info(msg)
max_accuracy = 0.0
if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'scaler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
scaler.load_state_dict(checkpoint['scaler'])
config.defrost()
config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
config.freeze()
logger.info(f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})")
if 'max_accuracy' in checkpoint:
max_accuracy = checkpoint['max_accuracy']
else:
max_accuracy = 0.0
del checkpoint
torch.cuda.empty_cache()
return max_accuracy
def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, scaler, logger):
save_state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'scaler': scaler.state_dict(),
'max_accuracy': max_accuracy,
'epoch': epoch,
'config': config}
save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth')
logger.info(f"{save_path} saving......")
torch.save(save_state, save_path)
logger.info(f"{save_path} saved !!!")
def get_grad_norm(parameters, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
return total_norm
def auto_resume_helper(output_dir, logger):
checkpoints = os.listdir(output_dir)
checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
logger.info(f"All checkpoints founded in {output_dir}: {checkpoints}")
if len(checkpoints) > 0:
latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime)
logger.info(f"The latest checkpoint founded: {latest_checkpoint}")
resume_file = latest_checkpoint
else:
resume_file = None
return resume_file
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= dist.get_world_size()
return rt
def load_pretrained(config, model, logger):
logger.info(f">>>>>>>>>> Fine-tuned from {config.MODEL.PRETRAINED} ..........")
checkpoint = torch.load(config.MODEL.PRETRAINED, map_location='cpu')
checkpoint_model = checkpoint['model']
if any([True if 'encoder.' in k else False for k in checkpoint_model.keys()]):
checkpoint_model = {k.replace('encoder.', ''): v for k, v in checkpoint_model.items() if k.startswith('encoder.')}
logger.info('Detect pre-trained model, remove [encoder.] prefix.')
else:
logger.info('Detect non-pre-trained model, pass without doing anything.')
if config.MODEL.TYPE in ['swin', 'swinv2']:
logger.info(f">>>>>>>>>> Remapping pre-trained keys for SWIN ..........")
checkpoint = remap_pretrained_keys_swin(model, checkpoint_model, logger)
else:
raise NotImplementedError
msg = model.load_state_dict(checkpoint_model, strict=False)
logger.info(msg)
del checkpoint
torch.cuda.empty_cache()
logger.info(f">>>>>>>>>> loaded successfully '{config.MODEL.PRETRAINED}'")
def remap_pretrained_keys_swin(model, checkpoint_model, logger):
state_dict = model.state_dict()
# Geometric interpolation when pre-trained patch size mismatch with fine-tuned patch size
all_keys = list(checkpoint_model.keys())
for key in all_keys:
if "relative_position_bias_table" in key:
relative_position_bias_table_pretrained = checkpoint_model[key]
relative_position_bias_table_current = state_dict[key]
L1, nH1 = relative_position_bias_table_pretrained.size()
L2, nH2 = relative_position_bias_table_current.size()
if nH1 != nH2:
logger.info(f"Error in loading {key}, passing......")
else:
if L1 != L2:
logger.info(f"{key}: Interpolate relative_position_bias_table using geo.")
src_size = int(L1 ** 0.5)
dst_size = int(L2 ** 0.5)
def geometric_progression(a, r, n):
return a * (1.0 - r ** n) / (1.0 - r)
left, right = 1.01, 1.5
while right - left > 1e-6:
q = (left + right) / 2.0
gp = geometric_progression(1, q, src_size // 2)
if gp > dst_size // 2:
right = q
else:
left = q
# if q > 1.090307:
# q = 1.090307
dis = []
cur = 1
for i in range(src_size // 2):
dis.append(cur)
cur += q ** (i + 1)
r_ids = [-_ for _ in reversed(dis)]
x = r_ids + [0] + dis
y = r_ids + [0] + dis
t = dst_size // 2.0
dx = np.arange(-t, t + 0.1, 1.0)
dy = np.arange(-t, t + 0.1, 1.0)
logger.info("Original positions = %s" % str(x))
logger.info("Target positions = %s" % str(dx))
all_rel_pos_bias = []
for i in range(nH1):
z = relative_position_bias_table_pretrained[:, i].view(src_size, src_size).float().numpy()
f_cubic = interpolate.interp2d(x, y, z, kind='cubic')
all_rel_pos_bias.append(torch.Tensor(f_cubic(dx, dy)).contiguous().view(-1, 1).to(
relative_position_bias_table_pretrained.device))
new_rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
checkpoint_model[key] = new_rel_pos_bias
# delete relative_position_index since we always re-init it
relative_position_index_keys = [k for k in checkpoint_model.keys() if "relative_position_index" in k]
for k in relative_position_index_keys:
del checkpoint_model[k]
# delete relative_coords_table since we always re-init it
relative_coords_table_keys = [k for k in checkpoint_model.keys() if "relative_coords_table" in k]
for k in relative_coords_table_keys:
del checkpoint_model[k]
# re-map keys due to name change
rpe_mlp_keys = [k for k in checkpoint_model.keys() if "rpe_mlp" in k]
for k in rpe_mlp_keys:
checkpoint_model[k.replace('rpe_mlp', 'cpb_mlp')] = checkpoint_model.pop(k)
# delete attn_mask since we always re-init it
attn_mask_keys = [k for k in checkpoint_model.keys() if "attn_mask" in k]
for k in attn_mask_keys:
del checkpoint_model[k]
return checkpoint_model