-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
108 lines (89 loc) · 3.03 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import argparse
from functools import partial
import torch
import torch.backends.cudnn as cudnn
from scood.data import get_dataloader
from scood.evaluation import Evaluator
from scood.networks import get_network
from scood.postprocessors import get_postprocessor
from scood.utils import load_yaml
def main(args, config):
benchmark = config["id_dataset"]
if benchmark == "cifar10":
num_classes = 10
elif benchmark == "cifar100":
num_classes = 100
# Init Datasets ############################################################
print("Initializing Datasets...")
get_dataloader_default = partial(
get_dataloader,
root_dir=args.data_dir,
benchmark=benchmark,
num_classes=num_classes,
stage="test",
interpolation=config["interpolation"],
batch_size=config["batch_size"],
shuffle=False,
num_workers=args.prefetch,
)
test_id_loader = get_dataloader_default(name=config["id_dataset"])
test_ood_loader_list = []
for name in config["ood_datasets"]:
test_ood_loader = get_dataloader_default(name=name)
test_ood_loader_list.append(test_ood_loader)
# Init Network #############################################################
print("Initializing Network...")
net = get_network(
config["network"],
num_classes,
checkpoint=args.checkpoint,
)
net.eval()
if args.ngpu > 1:
net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
if args.ngpu > 0:
net.cuda()
torch.cuda.manual_seed(1)
cudnn.benchmark = True # fire on all cylinders
# Init Evaluator ###########################################################
print("Starting Evaluation...")
# Init postprocessor
postprocess_args = config["postprocess_args"] if config["postprocess_args"] else {}
postprocessor = get_postprocessor(config["postprocess"], **postprocess_args)
evaluator = Evaluator(net)
evaluator.eval_ood(
test_id_loader,
test_ood_loader_list,
postprocessor=postprocessor,
method=config["eval_method"],
dataset_type=config["dataset_type"],
csv_path=args.csv_path,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
help="path to config file",
default="configs/test/cifar10.yml",
)
parser.add_argument(
"--checkpoint",
help="path to model checkpoint",
default="output/net.ckpt",
)
parser.add_argument(
"--data_dir",
help="directory to dataset",
default="data",
)
parser.add_argument(
"--csv_path",
help="path to save evaluation results",
default="results.csv",
)
parser.add_argument("--ngpu", type=int, default=1, help="number of GPUs to use")
parser.add_argument("--prefetch", type=int, default=4, help="pre-fetching threads.")
args = parser.parse_args()
# Load config file
config = load_yaml(args.config)
main(args, config)