-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathjGeneticAlgorithmTour.m
132 lines (123 loc) · 3.06 KB
/
jGeneticAlgorithmTour.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
%[2006]-"A GA-based feature selection and parameters optimization for
%support vector machines"
% (9/12/2020)
function GA = jGeneticAlgorithmTour(feat,label,opts)
% Parameters
CR = 0.8; % crossover rate
MR = 0.01; % mutation rate
Tour_size = 3; % tournament size
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'CR'), CR = opts.CR; end
if isfield(opts,'MR'), MR = opts.MR; end
if isfield(opts,'Ts'), Tour_size = opts.Ts; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = jInitialization(N,dim);
% Fitness
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) = fun(feat,label,X(i,:),opts);
% Best update
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
% Pre
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Generations
while t <= max_Iter
% Preparation
Xc1 = zeros(1,dim);
Xc2 = zeros(1,dim);
fitC1 = ones(1,1);
fitC2 = ones(1,1);
z = 1;
for i = 1:N
if rand() < CR
% Select two parents
k1 = jTournamentSelection(fit,Tour_size,N);
k2 = jTournamentSelection(fit,Tour_size,N);
% Store parents
P1 = X(k1,:);
P2 = X(k2,:);
% Single point crossover
ind = randi([1, dim - 1]);
% Crossover between two parents
Xc1(z,:) = [P1(1:ind), P2(ind + 1:dim)];
Xc2(z,:) = [P2(1:ind), P1(ind + 1:dim)];
% Mutation
for d = 1:dim
% First child
if rand() < MR
Xc1(z,d) = 1 - Xc1(z,d);
end
% Second child
if rand() < MR
Xc2(z,d) = 1 - Xc2(z,d);
end
end
% Fitness
fitC1(1,z) = fun(feat,label,Xc1(z,:),opts);
fitC2(1,z) = fun(feat,label,Xc2(z,:),opts);
z = z + 1;
end
end
% Merge population
XX = [X; Xc1; Xc2];
FF = [fit, fitC1, fitC2];
% Select N best solution
[FF, idx] = sort(FF,'ascend');
X = XX(idx(1:N),:);
fit = FF(1:N);
% Best agent
if fit(1) < fitG
fitG = fit(1);
Xgb = X(1,:);
end
% Save
curve(t) = fitG;
fprintf('\nGeneration %d Best (GA Tournament)= %f',t,curve(t))
t = t + 1;
end
% Select features based on selected index
Pos = 1:dim;
Sf = Pos(Xgb == 1);
sFeat = feat(:,Sf);
% Store results
GA.sf = Sf;
GA.ff = sFeat;
GA.nf = length(Sf);
GA.c = curve;
GA.f = feat;
GA.l = label;
end
%// Tournament Selection //
function Index = jTournamentSelection(fit,Tour_size,N)
% Random positions based on position & Tournament Size
Tour_idx = randsample(N,Tour_size);
% Select ftiness value based on position selected by tournament
Tour_fit = fit(Tour_idx);
% Get position of best ftiness value (win tournament)
[~, idx] = min(Tour_fit);
% Store the position
Index = Tour_idx(idx);
end
function X = jInitialization(N,dim)
% Initialize X vectors
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
if rand() > 0.5
X(i,d) = 1;
end
end
end
end