-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathingest.py
36 lines (29 loc) · 1.08 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os
from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from constants import CHROMA_SETTINGS
persist_directory = "Database"
def main():
for root, dirs, files in os.walk("Documents"):
for file in files:
if file.endswith(".pdf"):
print(file)
loader = PDFMinerLoader(os.path.join(root, file))
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
texts = text_splitter.split_documents(documents)
# Define embeddings
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# Define vector store
db = Chroma.from_documents(
texts,
embeddings,
persist_directory=persist_directory,
client_settings=CHROMA_SETTINGS
)
db.persist()
db = None
if __name__ == "__main__":
main()