-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadaptive_target_run.py
50 lines (38 loc) · 1.18 KB
/
adaptive_target_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import wandb
import numpy as np
from model.DeeplabV2 import *
import random
from trainer.adaptive_target_trainer import Trainer
import sys
from init_config import init_config
from model import *
from model.model_builder import init_decoder, init_encoder, init_ac_model, init_adaptive_tar
import torch.backends.cudnn as cudnn
import torch
import os
import sys
import datetime
print(sys.path)
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def main():
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
np.random.seed(1234)
random.seed(1234)
cudnn.enabled = True
cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
config = init_config("config/adaptive_target_config.yml", sys.argv)
wandb.init(config=config, project='', name='')
if config.source == 'synthia':
config.num_classes = 16
else:
config.num_classes = 19
encoder = init_encoder(config)
decoder = init_decoder(config)
ac = init_ac_model(config)
model = init_adaptive_tar(encoder, decoder, ac, config)
trainer = Trainer(model, config)
trainer.train()
if __name__ == "__main__":
main()