-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNN_model_PPO_alone.py
322 lines (266 loc) · 11.1 KB
/
NN_model_PPO_alone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
from matplotlib import pyplot as plt
import torch
import torch.nn as nn
from torch.distributions import Normal, Bernoulli, Categorical
from itertools import count
import numpy as np
from numba import njit
from collections import deque
from global_ import *
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = torch.device('cpu')
inner_step_size = 1
def make_nn():
import global_
nn_dict = {
'NN_ab': NN_ab,
'NN_a_random_b':NN_a_random_b,
}
return nn_dict[global_.network]()
class NN_ab(nn.Module):
def __init__(self):
super().__init__()
# sub network
self.net_ir = Intrinsic_Reward()
self.net_pg = PPO(4,1)
def forward(self, observation):
state, d = observation
#wasted = in_a[0].astype(bool)
#state_tensor = torch.from_numpy(state).to(device)
state = state.astype(np.float32)
# net a. Do not need to update parameters
with torch.no_grad():
intrinsic_reward = self.net_ir(state)
# net b
action = self.net_pg(state, [1], d)
return action
class NN_a_random_b(nn.Module):
def __init__(self):
super().__init__()
# sub network
self.net_ir = Intrinsic_Reward()
self.net_pg = PPO(4,1)
def forward(self, observation):
state, d = observation
#wasted = in_a[0].astype(bool)
#state_tensor = torch.from_numpy(state).to(device)
state = state.astype(np.float32)
# net a. Do not need to update parameters
with torch.no_grad():
intrinsic_reward = self.net_ir(state)
# net b
action = self.net_pg(state, intrinsic_reward, d)
return action
class Intrinsic_Reward(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(4, 16)
self.fc2 = nn.Linear(16, 8)
self.fc_loc = nn.Linear(8, 1)
def forward(self, in_a):
x1 = torch.tanh(self.fc1(torch.from_numpy(in_a)))
x2 = torch.tanh(self.fc2(x1))
x_loc = self.fc_loc(x2)
#x_action = x_loc[:-1]
x_reward = x_loc
return x_reward.numpy()
'''if self.initial:
self.initial = False
self.random_vetor = torch.rand(16)
#self.random_vetor = torch.pow(10, self.random_vetor*2-1)-2 # range [0.1, 10)
self.random_vetor = self.random_vetor*4-2 # range [-2, 2)
ones = torch.ones(self.into_last_layer)
self.random_vetor = torch.where(torch.rand(self.into_last_layer)<0.5,self.random_vetor,ones)'''
'''if self.initial:
self.initial = False
para = torch.nn.utils.parameters_to_vector( self.parameters() )
mask_random = torch.randn(para.shape)*1+1
para_random = mask_random*para
final_para_b = torch.where(torch.rand(para.shape)<0.5,para_random,para)
torch.nn.utils.vector_to_parameters( final_para_b, self.parameters() )'''
'''if self.initial:
self.initial = False
para_b = torch.nn.utils.parameters_to_vector( self.parameters() )
para_random = torch.zeros(para_b.shape)
mask_random = torch.rand(para_b.shape)
mask = mask_random<0.5
final_para_b = torch.where(mask,para_b,para_random)
torch.nn.utils.vector_to_parameters( final_para_b, self.parameters() )'''
class Nomalize:
def __init__(self, N_S):
self.mean = np.zeros((N_S,),dtype=np.float32)
self.std = np.zeros((N_S, ),dtype=np.float32)
self.stdd = np.zeros((N_S, ),dtype=np.float32)
self.n = 0
def __call__(self, x):
x = np.asarray(x)
self.n += 1
if self.n == 1:
self.mean = x
else:
#更新样本均值和方差
old_mean = self.mean.copy()
self.mean = old_mean + ((x - old_mean) / self.n).astype(np.float32)
self.stdd = self.stdd + (x - old_mean) * (x - self.mean)
#状态归一化
if self.n > 1:
self.std = np.sqrt(self.stdd / (self.n - 1))
else:
self.std = self.mean
x = x - self.mean
x = x / (self.std + 1e-8)
x = np.clip(x, -5, +5)
return x
class PPO(nn.Module):
def __init__(self,N_S,N_A):
super().__init__()
self.actor_net =Actor(N_S,N_A)
self.critic_net = Critic(N_S)
self.actor_optim = torch.optim.Adam(self.actor_net.parameters(),lr=lr_actor)
self.critic_optim = torch.optim.Adam(self.critic_net.parameters(),lr=lr_critic,weight_decay=l2_rate)
self.critic_loss_func = torch.nn.MSELoss()
self.memory = [[],[],[],[]] # deque()#
self.previous_state = None
self.steps = 0
self.nomalize = Nomalize(N_S)
def forward(self,state, intrinsic_reward, done):
state = self.nomalize(state)
d = float(done)
mask = 1-d
if self.previous_state is not None:
#self.memory.append([self.previous_state.numpy(),action.numpy(),intrinsic_reward,mask])
self.memory[0].append(self.previous_state)
self.memory[1].append(self.previous_action)
self.memory[2].append(intrinsic_reward)
self.memory[3].append(mask)
with torch.no_grad():
action = self.actor_net.choose_action(torch.from_numpy(state))
self.previous_action = action
self.previous_state = state
self.steps += 1
if self.steps == update_timestep:
self.train()
self.memory = [[],[],[],[]] # deque()#
self.previous_state = None # After the update, the state and action need to be resampled
self.steps = 0
return action
def train(self):
states = torch.tensor(np.vstack(self.memory[0]),dtype=torch.float32)
actions = torch.tensor(np.vstack(self.memory[1]),dtype=torch.float32)
rewards = torch.tensor(np.array(self.memory[2]),dtype=torch.float32)
masks = torch.tensor(np.array(self.memory[3]),dtype=torch.float32)
values = self.critic_net(states)
returns,advants = self.get_gae(rewards,masks,values)
old_mu = self.actor_net(states)
pi = self.actor_net.distribution(old_mu)
old_log_prob = pi.log_prob(actions).sum(1,keepdim=True)
n = len(states)
arr = np.arange(n)
for epoch in range(20):
np.random.shuffle(arr)
for i in range(n//batch_size):
b_index = arr[batch_size*i:batch_size*(i+1)]
b_states = states[b_index]
b_advants = advants[b_index].unsqueeze(1)
b_actions = actions[b_index]
b_returns = returns[b_index]
mu = self.actor_net(b_states)
pi = self.actor_net.distribution(mu)
new_prob = pi.log_prob(b_actions).sum(1,keepdim=True)
old_prob = old_log_prob[b_index].detach()
#KL散度正则项
# KL_penalty = self.kl_divergence(old_mu[b_index][b_index],mu)
ratio = torch.exp(new_prob-old_prob)
surrogate_loss = ratio*b_advants
values = self.critic_net(b_states)
critic_loss = self.critic_loss_func(values,b_returns)
self.critic_optim.zero_grad()
critic_loss.backward()
self.critic_optim.step()
ratio = torch.clamp(ratio,1.0-epsilon,1.0+epsilon)
clipped_loss =ratio*b_advants
actor_loss = -torch.min(surrogate_loss,clipped_loss).mean()
#actor_loss = -(surrogate_loss-beta*KL_penalty).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
#计算KL散度
def kl_divergence(self,old_mu,old_sigma,mu,sigma):
old_mu = old_mu.detach()
old_sigma = old_sigma.detach()
kl = torch.log(old_sigma) - torch.log(sigma) + (old_sigma.pow(2) + (old_mu - mu).pow(2)) / \
(2.0 * sigma.pow(2)) - 0.5
return kl.sum(1, keepdim=True)
#计算GAE
def get_gae(self,rewards, masks, values):
rewards = torch.Tensor(rewards)
masks = torch.Tensor(masks)
returns = torch.zeros_like(rewards)
advants = torch.zeros_like(rewards)
running_returns = 0
previous_value = 0
running_advants = 0
for t in reversed(range(0, len(rewards))):
#计算A_t并进行加权求和
running_returns = rewards[t] + gamma * running_returns * masks[t]
running_tderror = rewards[t] + gamma * previous_value * masks[t] - \
values.data[t]
running_advants = running_tderror + gamma * lambd * \
running_advants * masks[t]
returns[t] = running_returns
previous_value = values.data[t]
advants[t] = running_advants
#advants的归一化
advants = (advants - advants.mean()) / advants.std()
return returns, advants
class Actor(nn.Module):
def __init__(self,N_S,N_A):
super(Actor,self).__init__()
self.fc1 = nn.Linear(N_S,32)
self.fc2 = nn.Linear(32,16)
self.mu = nn.Linear(16,N_A)
self.distribution = torch.distributions.Bernoulli
self.initial = True; self.random_vetor = None
self.into_last_layer = 16
#初始化网络参数
def set_init(self,layers):
for layer in layers:
nn.init.normal_(layer.weight,mean=0.,std=0.1)
nn.init.constant_(layer.bias,0.)
def forward(self,s):
if self.initial:
self.initial = False
self.random_vetor = torch.rand(16)
#self.random_vetor = torch.pow(10, self.random_vetor*2-1)-2 # range [0.1, 10)
self.random_vetor = self.random_vetor*4-2 # range [-2, 2)
ones = torch.ones(self.into_last_layer)
self.random_vetor = torch.where(torch.rand(self.into_last_layer)<0.5,self.random_vetor,ones)
x = torch.tanh(self.fc1(s))
x = torch.tanh(self.fc2(x))
if self.random_vetor is not None:
x = x*self.random_vetor
mu = torch.sigmoid(self.mu(x))
return mu
def choose_action(self,s):
mu = self.forward(s)
Pi = self.distribution(mu)
return Pi.sample().numpy().astype(int)[0]
#Critic网洛
class Critic(nn.Module):
def __init__(self,N_S):
super(Critic,self).__init__()
self.fc1 = nn.Linear(N_S,16)
self.fc2 = nn.Linear(16,8)
self.fc3 = nn.Linear(8,1)
self.fc3.weight.data.mul_(0.1)
self.fc3.bias.data.mul_(0.0)
# self.set_init([self.fc1, self.fc2, self.fc2])
def set_init(self,layers):
for layer in layers:
nn.init.normal_(layer.weight,mean=0.,std=0.1)
nn.init.constant_(layer.bias,0.)
def forward(self,s):
x = torch.tanh(self.fc1(s))
x = torch.tanh(self.fc2(x))
values = self.fc3(x)
return values