-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathlayers.py
227 lines (187 loc) · 8.96 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from inits import *
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
# global unique layer ID dictionary for layer name assignment
_LAYER_UIDS = {}
def get_layer_uid(layer_name=''):
"""Helper function, assigns unique layer IDs."""
if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1
else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]
def sparse_dropout(x, keep_prob, noise_shape):
"""Dropout for sparse tensors."""
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
pre_out = tf.sparse_retain(x, dropout_mask)
return pre_out * (1./keep_prob)
def dot(x, y, sparse=False):
"""Wrapper for tf.matmul (sparse vs dense)."""
if sparse:
res = tf.sparse_tensor_dense_matmul(x, y)
else:
res = tf.matmul(x, y)
return res
class Layer(object):
"""Base layer class. Defines basic API for all layer objects.
Implementation inspired by keras (http://keras.io).
# Properties
name: String, defines the variable scope of the layer.
logging: Boolean, switches Tensorflow histogram logging on/off
# Methods
_call(inputs): Defines computation graph of layer
(i.e. takes input, returns output)
__call__(inputs): Wrapper for _call()
_log_vars(): Log all variables
"""
def __init__(self, **kwargs):
allowed_kwargs = {'name', 'logging'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
layer = self.__class__.__name__.lower()
name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.vars = {}
logging = kwargs.get('logging', False)
self.logging = logging
self.sparse_inputs = False
self.test = []
def _call(self, inputs):
return inputs
def __call__(self, inputs):
with tf.name_scope(self.name):
if self.logging and not self.sparse_inputs:
tf.summary.histogram(self.name + '/inputs', inputs)
outputs = self._call(inputs)
if self.logging:
tf.summary.histogram(self.name + '/outputs', outputs)
return outputs
def _log_vars(self):
for var in self.vars:
tf.summary.histogram(self.name + '/vars/' + var, self.vars[var])
class GraphConvolution(Layer):
"""Graph convolution layer."""
def __init__(self, input_dim, output_dim, length, placeholders, tag, dropout=0.,
sparse_inputs=False, act=tf.nn.relu, bias=False,
featureless=False, **kwargs):
super(GraphConvolution, self).__init__(**kwargs)
if dropout:
self.dropout = placeholders['dropout']
else:
self.dropout = 0.
self.act = act
self.support = placeholders['support_'+tag]
self.sparse_inputs = sparse_inputs
self.featureless = featureless
self.bias = bias
self.tag = tag
self.length = length
# helper variable for sparse dropout
# self.num_features_nonzero = placeholders['num_features_nonzero']
with tf.variable_scope(self.name+ '_' + self.tag + '_vars'):
for i in range(len(self.support)):
self.vars['weights_' + str(i)] = glorot([input_dim, output_dim],
name='weights_' + str(i))
# self.vars['bias_'+str(i)] = zeros([output_dim,], name='bias_' + str(i))
self.vars['bias_' + str(i)] = tf.zeros(shape=(self.length, 1), name='bias_' + str(i))
if self.logging:
self._log_vars()
def _call(self, inputs):
supports = list()
for i in range(len(self.support)):
if self.name == 'first'+self.tag: #这里注释了
x = inputs
else:
x = inputs[i]
# x = inputs #做成concat需要修改三个地方,修改这里的输入,add输出,移除attention
# dropout
x = tf.nn.dropout(x, 1-self.dropout)
# convolve
# support = tf.matmul(self.support[i], x)
if not self.featureless:
pre_sup = dot(x, self.vars['weights_' + str(i)])
else:
pre_sup = self.vars['weights_' + str(i)]
support = dot(self.support[i], pre_sup)
# self.test.append(self.vars['bias_' + str(i)])
support = support + self.vars['bias_' + str(i)]
supports.append(self.act(support))
# output = tf.add_n(supports) #这里解除注释了
output = supports #这里注释了
# bias
# return output
return self.act(output)
class RatLayer():
def __init__(self, user, item, act=tf.nn.relu):
self.user = user
self.item = item
self.act = act
def __call__(self):
rate_matrix = tf.matmul(self.user,tf.transpose(self.item))
return self.act(rate_matrix)
class RateLayer():
def __init__(self, user, item, user_dim, item_dim, ac=tf.nn.relu):
self.user = user
self.item = item
self.name = 'RateLayer'
self.ac = ac
self.vars = {}
with tf.name_scope(self.name + '_vars'):
self.vars['user_latent'] = tf.Variable(tf.truncated_normal(shape=[int(FLAGS.latent_dim), user_dim],
stddev=1.0), name='user_latent_matrix')
self.vars['item_latent'] = tf.Variable(tf.truncated_normal(shape=[int(FLAGS.latent_dim), item_dim],
stddev=1.0), name='item_latent_matrix')
self.vars['user_specific'] = tf.Variable(tf.truncated_normal(shape=[int(FLAGS.output_dim), item_dim],
stddev=0.1), name='user_specific')
self.vars['item_specific'] = tf.Variable(tf.truncated_normal(shape=[int(FLAGS.output_dim), user_dim],
stddev=0.1), name='item_specific')
self.vars['user_bias'] = tf.zeros(shape=[user_dim,1],name='user_bias')
self.vars['item_bias'] = tf.zeros(shape=[item_dim,1], name='item_bias')
self.vars['alpha1'] = tf.Variable(initial_value=1.0, name='alpha1')
self.vars['alpha2'] = tf.Variable(initial_value=1.0, name='alpha2')
def __call__(self):
rate_matrix1 = tf.matmul(tf.transpose(self.vars['user_latent']),self.vars['item_latent'])
u_matrix = self.vars['alpha1']*(tf.matmul(self.user, self.vars['user_specific'])+self.vars['user_bias'])
i_matrix = self.vars['alpha2']*(tf.transpose(tf.matmul(self.item,
self.vars['item_specific'])+self.vars['item_bias']))
rate_matrix2 = rate_matrix1+u_matrix+i_matrix
return rate_matrix2
class SimpleAttLayer():
def __init__(self, attention_size, tag, time_major=False):
self.attention_size = attention_size
self.time_major = time_major
self.tag = tag
self.vars = {}
def __call__(self, inputs):
if isinstance(inputs, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
inputs = tf.concat(inputs, 2)
if self.time_major:
# (T,B,D) => (B,T,D)
inputs = tf.transpose(inputs, [1, 0, 2])
hidden_size = inputs.shape[2].value # D value - hidden size of the RNN layer
# Trainable parameters
with tf.variable_scope('v_'+self.tag):
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
# the shape of `v` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
w_omega = tf.get_variable(initializer=tf.random_normal([hidden_size, self.attention_size],
stddev=0.1), name='w_omega')
self.vars['w_omega'] = w_omega
b_omega = tf.get_variable(initializer=tf.random_normal([self.attention_size], stddev=0.1), name='b_omega')
self.vars['b_omega'] = b_omega
u_omega = tf.get_variable(initializer=tf.random_normal([self.attention_size], stddev=0.1), name='u_omega')
self.vars['u_omega'] = u_omega
v = tf.tanh(tf.tensordot(inputs, w_omega, axes=1) + b_omega)
# For each of the timestamps its vector of size A from `v` is reduced with `u` vector
vu = tf.tensordot(v, u_omega, axes=1, name='vu') # (B,T) shape
alphas = tf.nn.softmax(vu, name='alphas') # (B,T) shape
self.alphas = vu
# Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
output = tf.reduce_sum(inputs*tf.expand_dims(alphas, -1), 0)
return output