-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
87 lines (71 loc) · 3.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from utils import *
import tensorflow as tf
from models import *
import time
import numpy as np
# Set random seed
seed = 123
np.random.seed(seed)
tf.set_random_seed(seed)
# Set
learning_rate = 0.001
decay_rate = 1
global_steps = 1000
decay_steps = 100
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('hidden1', 256, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 128, 'Number of units in hidden layer 2.')
flags.DEFINE_float('dropout', 0.5, 'Dropout rate (1 - keep probability).')
flags.DEFINE_float('weight_decay', 5e-4, 'Weight for L2 loss on embedding matrix.')
flags.DEFINE_integer('output_dim', 64, 'Output_dim of user final embedding.')
flags.DEFINE_integer('latent_dim', 30,'Latent_dim of user&item.')
# Load data
support_string_user = ['ucu', 'uvu', 'uctcu', 'uku'] #
support_string_item = ['kuk']
rating, features_item, features_user, support_user, support_item, negative = load_data(user=support_string_user,
item=support_string_item)
user_dim = rating.shape[0]
item_dim = rating.shape[1]
# user_support
support_num_user = len(support_string_user)
# item_support
support_num_item = len(support_string_item)
# Define placeholders
placeholders = {
'rating': tf.placeholder(dtype=tf.float32, shape=rating.shape, name="rating"),
'features_user': tf.placeholder(dtype=tf.float32, shape=features_user.shape, name='features_user'),
'features_item': tf.placeholder(dtype=tf.float32, shape=features_item.shape, name="features_item"),
'support_user': [tf.placeholder(dtype=tf.float32, name='support'+str(_)) for _ in range(support_num_user)],
'support_item': [tf.placeholder(dtype=tf.float32, name='support'+str(_)) for _ in range(support_num_item)],
'dropout': tf.placeholder_with_default(0., shape=(), name='dropout'),
'negative': tf.placeholder(dtype=tf.int32, shape=negative.shape, name='negative')
}
global_ = tf.Variable(tf.constant(0))
learning = tf.train.exponential_decay(learning_rate,global_,decay_steps,decay_rate,staircase=False)
# Create Model
model = AGCNrec(placeholders, input_dim_user=features_user.shape[1], input_dim_item=features_item.shape[1],
user_dim=user_dim, item_dim=item_dim, learning_rate=learning)
# Initialize session
sess = tf.Session()
# Init variables
sess.run(tf.global_variables_initializer())
# Train model
epoch = 0
while epoch < global_steps:
# Construct feed dictionary
feed_dict = construct_feed_dict(placeholders, features_user, features_item, rating, support_user,
support_item, negative)
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
feed_dict.update({global_:epoch})
_, los, HR1, HR5, HR10, HR20, NDCG5, NDCG10, NDCG20, MRR, AUC, user, item, result = sess.run([model.train_op, model.los, model.hrat1,
model.hrat5, model.hrat10, model.hrat20,
model.ndcg5, model.ndcg10, model.ndcg20,
model.mrr, model.auc, model.user, model.item, model.result], feed_dict)
if epoch%50 == 0:
aLine = 'Train'+str(epoch)+" Loss:"+str(los)+" HR@1:"+str(HR1)+" HR@5:"+str(HR5)+" HR@10:"+str(HR10)+\
" HR@20:"+str(HR20)+" nDCG@5:"+str(NDCG5)+" nDCG@10:"+str(NDCG10)+" nDCG@20:"+str(NDCG20)+\
" MRR:"+str(MRR)+" AUC:"+str(AUC)
print(aLine)
epoch += 1