-
Notifications
You must be signed in to change notification settings - Fork 0
/
collision-avoidance-system_withqueueing.py
567 lines (446 loc) · 26.1 KB
/
collision-avoidance-system_withqueueing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import torch
import numpy as np
import cv2
from time import time
import depthai as dai
import math
from calc_nofactor_depthqueueing import HostSpatialsCalc
from texthandler import TextHandler
from depthqueueing import DepthQueueModifier
from depthqueueing import QueueManager
from validator import DepthValidator
from multiprocessing import Process, Manager
from pathprocess import CustomProcess
import logging
logging.basicConfig(filename='example_test.log', encoding='utf-8', filemode="a", level=logging.DEBUG,
format='%(asctime)s|%(levelname)s|%(message)s')
def calculate_distance(point1, point2):
x1, y1, z1 = point1
x2, y2, z2 = point2
dx, dy, dz = x1 - x2, y1 - y2, z1 - z2
distance = math.sqrt(dx ** 2 + dy ** 2 + dz ** 2)
return distance
def startprocess():
with Manager() as manager:
general_exchange = manager.dict()
path_exchange = manager.list()
p = Process(target=f, args=(
general_exchange, path_exchange))
p.start()
#p.join()
print(general_exchange)
print(path_exchange)
class CAS:
"""
Class implements Yolo5 model to make inferences on a youtube video using Opencv2.
"""
def create_pipeline(self):
# Create pipeline
pipeline = dai.Pipeline()
camRgb = pipeline.create(dai.node.ColorCamera)
xoutRgb = pipeline.create(dai.node.XLinkOut)
xoutRgb.setStreamName("rgb")
camRgb.video.link(xoutRgb.input)
camRgb.setBoardSocket(dai.CameraBoardSocket.RGB)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_12_MP)
camRgb.setInterleaved(False)
camRgb.setIspScale(1, 4) # 4056x3040 -> 812x608
camRgb.setPreviewSize(812, 608)
camRgb.setPreviewKeepAspectRatio(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
camRgb.setFps(25)
xoutIsp = pipeline.create(dai.node.XLinkOut)
xoutIsp.setStreamName("isp")
camRgb.isp.link(xoutIsp.input)
#dai.Device(pipeline).getFov()
manip = pipeline.create(dai.node.ImageManip)
manip.setMaxOutputFrameSize(1080000) # 300x300x3
manip.initialConfig.setResizeThumbnail(600, 600)
camRgb.video.link(manip.inputImage)
xoutmanip = pipeline.create(dai.node.XLinkOut)
xoutmanip.setStreamName("manip")
manip.out.link(xoutmanip.input)
# depth pipeline
# Define sources and outputs
monoLeft = pipeline.create(dai.node.MonoCamera)
xoutLeft = pipeline.create(dai.node.XLinkOut)
xoutLeft.setStreamName("left")
#monoLeft.out.link(xoutLeft.input)
manipleft = pipeline.create(dai.node.ImageManip)
manipleft.setMaxOutputFrameSize(1080000) # 300x300x3
manipleft.initialConfig.setResizeThumbnail(600, 600)
monoLeft.out.link(manipleft.inputImage)
manipleft.out.link(xoutLeft.input)
monoRight = pipeline.create(dai.node.MonoCamera)
stereo = pipeline.create(dai.node.StereoDepth)
# Properties
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
stereo.initialConfig.setConfidenceThreshold(255)
stereo.initialConfig.setMedianFilter(dai.MedianFilter.KERNEL_5x5)
stereo.setLeftRightCheck(True)
stereo.setSubpixel(True)
# Linking
monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)
xoutDepth = pipeline.create(dai.node.XLinkOut)
xoutDepth.setStreamName("depth")
stereo.depth.link(xoutDepth.input)
#stereo.disparity.link(xoutDepth.input)
xoutDepth = pipeline.create(dai.node.XLinkOut)
xoutDepth.setStreamName("disp")
stereo.depth.link(xoutDepth.input)
manipdepth = pipeline.create(dai.node.ImageManip)
manipdepth.setMaxOutputFrameSize(1080000) # 300x300x3
manipdepth.initialConfig.setResizeThumbnail(600, 600)
stereo.depth.link(manipdepth.inputImage)
xoutmanipdepth = pipeline.create(dai.node.XLinkOut)
xoutmanipdepth.setStreamName("manipdepth")
manipdepth.out.link(xoutmanipdepth.input)
return pipeline, stereo
def __init__(self, capture_index, model_name, dangerthreshold, mapthreshold):
"""
Initializes the class with youtube url and output file.
:param url: Has to be as youtube URL,on which prediction is made.
:param out_file: A valid output file name.
"""
self.capture_index = capture_index
self.model = self.load_model(model_name)
self.classes = self.model.names
self.device_type = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Using Device: ", self.device_type)
self.pipeline, self.stereo = self.create_pipeline()
self.device = dai.Device(self.pipeline)
self.calibData = self.device.readCalibration()
self.FOV = self.calibData.getFov(dai.CameraBoardSocket.RGB)
self.delta = 5
self.LowerThreshold = 0 # in millimeters
self.UpperThreshold = 30000 # in millimeters
self.mapthreshold = mapthreshold # in meters
self.hostSpatials = HostSpatialsCalc(self.device)
self.hostSpatials.setDeltaRoi(self.delta)
self.hostSpatials.setLowerThreshold(self.LowerThreshold)
self.hostSpatials.setUpperThreshold(self.UpperThreshold)
self.max_z = 4
self.min_z = 1
self.max_x = 0.9
self.min_x = -0.
self.text = TextHandler()
self.mapheight = 1000
self.mapwidth = 1000
self.numberofaxis = 10
self.birdframe = self.make_bird_frame()
self.minobjectdistance = 0.4 #m
self.minimumdistance = 0.5
self.dangerthreshold = dangerthreshold # m
self.pathlist = []
self.obstaclelist = []
self.logginglist = []
self.queueobjectlist = []
def get_video_capture(self):
"""
Creates a new video streaming object to extract video frame by frame to make prediction on.
:return: opencv2 video capture object, with lowest quality frame available for video.
"""
return cv2.VideoCapture(self.capture_index)
def load_model(self, model_name):
"""
Loads Yolo5 model from pytorch hub.
:return: Trained Pytorch model.
"""
if model_name:
model = torch.hub.load('ultralytics/yolov5', 'custom', path=model_name, force_reload=True)
else:
model = torch.hub.load('ultralytics/yolov5', 'yolov5l', pretrained=True)
return model
def score_frame(self, frame):
"""
Takes a single frame as input, and scores the frame using yolo5 model.
:param frame: input frame in numpy/list/tuple format.
:return: Labels and Coordinates of objects detected by model in the frame.
"""
self.model.to(self.device_type)
frame = [frame]
results = self.model(frame)
labels, cord = results.xyxyn[0][:, -1], results.xyxyn[0][:, :-1]
return labels, cord
def class_to_label(self, x):
"""
For a given label value, return corresponding string label.
:param x: numeric label
:return: corresponding string label
"""
return self.classes[int(x)]
def make_bird_frame(self):
text = self.text
img = np.zeros((self.mapheight, self.mapwidth, 3), np.uint8)
fov = self.FOV
print(f"fov:{fov}")
#fov = 68.7938
min_distance = 0.827
# frame = np.zeros((320, 100, 3), np.uint8)
min_y = int((1 - (min_distance - self.min_z) / (self.max_z - self.min_z)) * img.shape[0])
cv2.rectangle(img, (0, min_y), (img.shape[1], img.shape[0]), (70, 70, 70), -1)
alpha = (180 - self.FOV) / 2
center = int(img.shape[1] / 2)
max_p = img.shape[0] - int(math.tan(math.radians(alpha)) * center)
fov_cnt = np.array([
(0, img.shape[0]),
(img.shape[1], img.shape[0]),
(img.shape[1], max_p),
(center, img.shape[0]),
(0, max_p),
(0, img.shape[0]),
])
axisdistance = self.mapheight/self.numberofaxis
lst = list(np.arange(1,self.numberofaxis + 1))
counter = 0
counter2 = 0
for i in lst:
cv2.line(img, (0, counter * int(axisdistance)), (1000, counter * int(axisdistance)), (70, 70, 70), 2)
counter += 1
counter2 += self.mapthreshold/self.numberofaxis
cv2.fillPoly(img, [fov_cnt], color=(70, 70, 70))
counter = 0
counter2 = 0
for i in lst:
#cv2.line(img, (0, counter * int(axisdistance)), (1000, counter * int(axisdistance)), (70, 70, 70), 2)
text.putText(img, f"{self.mapthreshold - counter2}", (960, counter * int(axisdistance) -5))
counter += 1
counter2 += self.mapthreshold/self.numberofaxis
text.putText(img, f"distance threshold:{self.mapthreshold}", (10, 900))
text.putText(img, f"number of axis:{self.numberofaxis}", (10, 880))
text.putText(img, f"FOV:{self.FOV}", (10, 860))
print(center)
print(alpha)
print(max_p)
print(fov_cnt)
return img
def calc_map_z(self, zval):
return int(self.mapheight - (zval / self.mapthreshold * self.mapheight))
def calc_map_x(self, xval):
return int((xval / 30 * self.mapwidth) + 500)
def convert_x_to_depth(self, x):
return int(x/1014*640)
def convert_y_to_depth(self, y):
return int(y/760*400)
def convert_x_to_rgb(self, x):
return int(x/4)
def calc_center(self, roi):
return (int((roi[0]+roi[2])/2), int((roi[1]+roi[3])/2))
def __call__(self):
"""
This function is called when class is executed, it runs the loop to read the video frame by frame,
and write the output into a new file.
:return: void
"""
# Connect to device and start pipeline
with self.device as device:
# Output queue will be used to get the rgb frames from the output defined above
video = device.getOutputQueue(name="rgb", maxSize=1, blocking=False)
depthQueue = device.getOutputQueue(name="depth", maxSize=1, blocking=False)
dispQ = device.getOutputQueue(name="disp", maxSize=1, blocking=False)
leftMono = device.getOutputQueue(name="left", maxSize=1, blocking=False)
ispQueue = device.getOutputQueue(name="isp", maxSize=1, blocking=False)
manipQueue = device.getOutputQueue(name="manip", maxSize=1, blocking=False)
manipdepthQueue = device.getOutputQueue(name="manipdepth", maxSize=1, blocking=False)
text = self.text
process = CustomProcess(self.obstaclelist, 50)
queuemanager = QueueManager()
while True:
videoFrame = video.tryGet()
if videoFrame is not None:
frame = videoFrame.getCvFrame()
depthFrame = depthQueue.get().getFrame()
monoFrame = leftMono.get().getCvFrame()
isp = ispQueue.get().getCvFrame()
manip = manipQueue.get().getCvFrame()
manipdepth = manipdepthQueue.get().getCvFrame()
manipdepth = (manipdepth * (63.75 / self.stereo.initialConfig.getMaxDisparity())).astype(np.uint8)
manipdepth = cv2.applyColorMap(manipdepth, cv2.COLORMAP_JET)
print(f"frame shape:{frame.shape}")
disp = dispQ.get().getFrame()
#change to 1020
disp = (disp * (63.75 / self.stereo.initialConfig.getMaxDisparity())).astype(np.uint8)
disp = cv2.applyColorMap(disp, cv2.COLORMAP_JET)
start_time = time()
results = self.score_frame(frame)
labels, cord = results
n = len(labels)
x_shape, y_shape = frame.shape[1], frame.shape[0]
self.birdframe = self.make_bird_frame()
print(f"birdframe array: {self.birdframe} birdframe shape:{self.birdframe.shape} ")
for i in range(n):
row = cord[i]
if row[4] >= 0.7:
x1, y1, x2, y2 = int(row[0] * x_shape), int(row[1] * y_shape), int(row[2] * x_shape), int(row[3] * y_shape)
roi = x1, y1, x2, y2
text.rectangle(frame, (x1, y1), (x2, y2))
text.putText(frame, self.class_to_label(labels[i]), (x1, y1))
#--> give roi
#xmin, ymin, xmax, ymax
depthroi = (self.convert_x_to_depth(x1), self.convert_y_to_depth(y1), self.convert_x_to_depth(x2), self.convert_y_to_depth(y2))
#spatials, centroid = self.hostSpatials.calc_spatials(depthFrame, depthroi)
averageDepth = self.hostSpatials.calc_averagedepth(depthFrame, depthroi)
print(f'averageDepth {averageDepth}')
#spatials_center_rectangle, centroid_center_rectangle = self.hostSpatials.calc_spatials(depthFrame, depthroi_checked_input)
depthroi_checked_input = self.hostSpatials._check_input(self.calc_center(depthroi),depthFrame)
averageDepth_checked_input = self.hostSpatials.calc_averagedepth(depthFrame,depthroi_checked_input)
closer_depth = min(averageDepth, averageDepth_checked_input)
#object depth queueing
# input object depth & bounding box
averageDepth = queuemanager.check_objects_and_return_depth(closer_depth, roi, self.queueobjectlist)
#es wird gesucht und dort hinzugefuegt wo es hingehoert oder es wird ein neues objekt erstellt, es wird die currentmeandepth ausgegeben
print(f'averageDepth processed{averageDepth}')
# at the end, add class instance to self.queueobjectlist
spatials, centroid = self.hostSpatials.calc_spatials(depthFrame, depthroi, averageDepth)
# centroid == x/y in our case
print(f"spatials: {spatials}, centroid: {centroid}")
text.circle(disp, (centroid['x'], centroid['y']), 2, (0, 0, 255), 2)
spatials_center_rectangle, centroid_center_rectangle = self.hostSpatials.calc_spatials(depthFrame, depthroi_checked_input, averageDepth_checked_input)
# Get disparity frame for nicer depth visualization
rgb_center = self.calc_center(roi)
depth_center = self.calc_center(depthroi)
print(f"calc center: roi:{self.calc_center(roi)}, depthroi:{self.calc_center(depthroi)}")
print(f"depthroi: {depthroi}")
print(f"depthroi_checked: {depthroi_checked_input}")
print(f"roi:{roi}")
#print(f"roi_checked_input:{roi_checked_input}")
#--> activte when 800
#text.rectangle(disp, (depthroi[0]*2, depthroi[1]*2), (depthroi[2]*2, depthroi[3]*2))
text.rectangle(disp, (depthroi[0], depthroi[1]), (depthroi[2], depthroi[3]))
#cv2.rectangle(frame, (roi_checked_input[0], roi_checked_input[1]), (roi_checked_input[2], roi_checked_input[3]), bgr, 2)
#text.rectangle(disp, (x1, y1), (x1, y1))
text.putText(disp, "X: " + (
"{:.1f}m".format(spatials_center_rectangle['x'] / 1000) if not math.isnan(spatials_center_rectangle['x']) else "--"),
(depthroi_checked_input[0] + 30, depthroi_checked_input[1] + 20))
text.putText(disp, "Y: " + (
"{:.1f}m".format(spatials_center_rectangle['y'] / 1000) if not math.isnan(spatials_center_rectangle['y']) else "--"),
(depthroi_checked_input[0] + 30, depthroi_checked_input[1] + 35))
text.putText(disp, "Z: " + (
"{:.1f}m".format(spatials_center_rectangle['z'] / 1000) if not math.isnan(spatials_center_rectangle['z']) else "--"),
(depthroi_checked_input[0] + 30, depthroi_checked_input[1] + 50))
text.rectangle(disp, (depthroi_checked_input[0], depthroi_checked_input[1]), (depthroi_checked_input[2], depthroi_checked_input[3]))
text.putText(disp, "X: " + (
"{:.1f}m".format(spatials['x'] / 1000) if not math.isnan(spatials['x']) else "--"),
(depthroi[0] + 10, depthroi[1] + 20))
text.putText(disp, "Y: " + (
"{:.1f}m".format(spatials['y'] / 1000) if not math.isnan(spatials['y']) else "--"),
(depthroi[0] + 10, depthroi[1] + 35))
text.putText(disp, "Z: " + (
"{:.1f}m".format(spatials['z'] / 1000) if not math.isnan(spatials['z']) else "--"),
(depthroi[0] + 10, depthroi[1] + 50))
print(f"spatials x:{spatials['x']}")
if not math.isnan(spatials['x']) and not math.isnan(spatials_center_rectangle['x']):
z = spatials['z'] / 1000 if spatials['z'] < spatials_center_rectangle['z'] else spatials_center_rectangle['z'] / 1000
x = spatials_center_rectangle['x'] / 1000 if z == spatials_center_rectangle['z'] / 1000 else spatials['x'] / 1000
y = spatials_center_rectangle['y'] / 1000 if z == spatials_center_rectangle['z'] / 1000 else spatials['y'] / 1000
print(f"z:{z}, y:{y}, x:{x}")
text.putText(frame, "X: " + (
"{:.1f}m".format(x) if not math.isnan(x) else "--"),
(x1 + 10, y1 + 20))
text.putText(frame, "Y: " + (
"{:.1f}m".format(y) if not math.isnan(y) else "--"),
(x1 + 10, y1 + 35))
text.putText(frame, "Z: " + (
"{:.1f}m".format(z) if not math.isnan(z) else "--"),
(x1 + 10, y1 + 50))
map_x = self.calc_map_x(x)
map_y = self.calc_map_z(z)
pixel_x = int(x / self.mapthreshold * self.mapwidth + self.mapwidth / 2)
pixel_y = int(self.mapheight - z / self.mapthreshold * self.mapheight)
print(f"pixel : {pixel_x}, {pixel_y}")
print(f"map: x:{map_x}, y:{map_y}")
#performance bottleneck
if DepthValidator.is_valid_depth(z, 1, x1-x2, 3840, 69):
text.putText(frame, "valid", (x1 + 20, y1 + 60))
else:
text.putText(frame, "invalid", (x1 + 20, y1 + 60))
'''
#danger feature
bg_color = (0, 0, 0)
color = (255, 255, 255)
if z < self.dangerthreshold:
color = (0, 0, 255)
line_type = cv2.LINE_AA
text_type = cv2.FONT_HERSHEY_SIMPLEX
coords = (900, 40)
dangertext = 'DANGER'
cv2.putText(frame, dangertext, coords, text_type, 0.5, bg_color, 3, line_type)
cv2.putText(frame, dangertext, coords, text_type, 0.5, color, 1, line_type)
'''
# data = [label, smallest spatials, bird view coords, roi, depthroi, innerdisproi]
data = [self.class_to_label(labels[i]), [x,y,z], [pixel_x, pixel_y], roi, depthroi, depthroi_checked_input]
self.logginglist.append(data)
color = (0, 0, 255)
text.circle(self.birdframe, (pixel_x, pixel_y), 2, color, 2)
# border rectangle coordinates
x_factor = self.mapwidth / self.mapthreshold
y_factor = self.mapheight / self.mapthreshold
x_pixel_distance = x_factor * self.minobjectdistance
y_pixel_distance = y_factor * self.minobjectdistance
print(f"xfactor:{x_factor} xpixel:{x_pixel_distance}")
mapx1 = (int(pixel_x - x_pixel_distance), int(pixel_y - y_pixel_distance))
mapx2 = (int(pixel_x - x_pixel_distance), int(pixel_y + y_pixel_distance))
mapy1 = (int(pixel_x + x_pixel_distance), int(pixel_y - y_pixel_distance))
mapy2 = (int(pixel_x + x_pixel_distance), int(pixel_y + y_pixel_distance))
text.rectangle(self.birdframe, (mapx1[0], mapx1[1]), (mapy2[0], mapy2[1]))
self.obstaclelist.append([mapx1[0]//20, mapy1[0]//20, mapx1[1]//20, mapx2[1]//20])
print("not changed",mapx1[1], mapx2[1], mapx1[0], mapy1[0])
print("changed",mapx1[1]//10, mapx2[1]//10, mapx1[0]//10, mapy1[0]//10)
print(f"points:{mapx1, mapx2, mapy1, mapy2}")
print(f'queueobjectlist:{self.queueobjectlist}')
#save.save([x,y,z])
if process.is_alive() == False:
print("obstaclelist", self.obstaclelist)
process = CustomProcess(self.obstaclelist, 50)
process.start()
print('Waiting for the child process to finish')
print(f'Parent got: {process.obstaclelist}')
print(process.path)
pathlistx = [process.path[i] * (1000 // 50) + 20 for i in range(len(process.path) // 2)]
pathlisty = [process.path[i] * (1000 // 50) + 20 for i in
range(len(process.path) // 2, len(process.path))]
print(f"pathlistx:{pathlistx}, len:{len(pathlistx)}")
print(f"pathlisty:{pathlisty}, len:{len(pathlisty)}")
pathlist = []
for i in range(len(pathlistx)):
pathlist.append([pathlistx[i], pathlisty[i]])
pathlist = np.array(pathlist, dtype=np.int32)
print(f"pathlist:{pathlist}")
self.pathlist = pathlist
print("pathlistdebug", self.pathlist)
if len(self.pathlist) > 0:
cv2.polylines(self.birdframe, [self.pathlist], False, (0, 255, 255))
self.obstaclelist = []
end_time = time()
fps = 1 / np.round(end_time - start_time, 2)
print(f"Frames Per Second : {fps}")
text.putText(frame, f'FPS: {int(fps)}', (900, 70))
if len(self.logginglist) > 0:
filename = time()
filepath = f'C:/Users/johan/images/{filename}.jpg'
filepathdepth = f'C:/Users/johan/images/d{filename}.jpg'
filepathmap = f'C:/Users/johan/images/m{filename}.jpg'
logging.info(f"{self.logginglist}|{filepath}")
cv2.imwrite(filepath, frame)
cv2.imwrite(filepathdepth, disp)
cv2.imwrite(filepathmap, self.birdframe)
self.logginglist = []
cv2.imshow("birdframe", self.birdframe)
cv2.imshow("depth", disp)
cv2.imshow('YOLOv5 Detection', frame)
cv2.imshow("monoLeft", monoFrame)
cv2.imshow("isp", isp)
cv2.imshow("manip", manip)
cv2.imshow("manip depth", manipdepth)
if cv2.waitKey(5) & 0xFF == ord('q'):
break
# Create a new object and execute.
if __name__ == '__main__':
detector = CAS(capture_index=0, model_name="yolov5l", dangerthreshold=0.2, mapthreshold=10)
detector()
#models/yolov5s/bestl.pt