From f19c6e13319abc293fe9ae99812dba70daabb26b Mon Sep 17 00:00:00 2001 From: Jonas Breuling Date: Tue, 30 Jul 2024 16:01:32 +0200 Subject: [PATCH] Horner's method for Radau is not correct yet. --- scipy_dae/integrate/_dae/radau.py | 15 ++++++++++++--- 1 file changed, 12 insertions(+), 3 deletions(-) diff --git a/scipy_dae/integrate/_dae/radau.py b/scipy_dae/integrate/_dae/radau.py index c450484..4023f6f 100644 --- a/scipy_dae/integrate/_dae/radau.py +++ b/scipy_dae/integrate/_dae/radau.py @@ -494,6 +494,7 @@ def _step_impl(self): Z0 = np.zeros((s, y.shape[0])) else: Z0 = self.sol(t + h * C)[0].T - y + Z0 = np.zeros((s, y.shape[0])) scale = atol + np.abs(y) * rtol converged = False @@ -719,10 +720,18 @@ def _call_impl(self, t): # compute derivative of interpolation polynomial yp = np.dot(self.Q, dp) - # # compute derivative of interpolation polynomial + # # compute both values by Horner's method: + # # https://cut-the-knot.org/Curriculum/Calculus/HornerMethod.shtml + # # https://math.stackexchange.com/questions/2139142/how-does-horner-method-evaluate-the-derivative-of-a-function + # y = np.zeros_like(y) + # y += self.Q[:, -1][:, None] # yp = np.zeros_like(y) - # for i in range(self.order + 1): - # yp += np.outer(self.Q[:, i] * (i + 1), x**i) / self.h + # for i in range(self.order + 1, 1, -1): + # yp = y + yp * x[None, :] + # y = self.Q[:, i - 1][:, None] + y * x[None, :] + + # # y += self.y_old[:, None] + # yp /= self.h return y, yp