-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_net.py
158 lines (134 loc) · 5.46 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/env python
# --------------------------------------------------------------------------------
# MPViT: Multi-Path Vision Transformer for Dense Prediction
# Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI).
# All Rights Reserved.
# Written by Youngwan Lee
# --------------------------------------------------------------------------------
"""
Detection Training Script for MPViT.
"""
import os
import itertools
import torch
from typing import Any, Dict, List, Set
from detectron2.data import build_detection_train_loader, build_detection_test_loader
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from detectron2.evaluation import COCOEvaluator
from detectron2.solver.build import maybe_add_gradient_clipping
from mpvit import add_mpvit_config
from mpvit import DetrDatasetMapper
class Trainer(DefaultTrainer):
@classmethod
def build_train_loader(cls, cfg):
if cfg.AUG.DETR:
mapper = DetrDatasetMapper(cfg, is_train=True)
else:
mapper = None
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_test_loader(cls, cfg, dataset_name):
if cfg.AUG.DETR:
mapper = DetrDatasetMapper(cfg, is_train=False)
else:
mapper = None
return build_detection_test_loader(cfg, dataset_name, mapper=mapper)
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return COCOEvaluator(dataset_name, output_dir=output_folder)
@classmethod
def build_optimizer(cls, cfg, model):
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for key, value in model.named_parameters(recurse=True):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
lr = cfg.SOLVER.BASE_LR
weight_decay = cfg.SOLVER.WEIGHT_DECAY
if "backbone" in key:
lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER
params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}]
def maybe_add_full_model_gradient_clipping(optim): # optim: the optimizer class
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
return optimizer
# @classmethod
# def build_lr_scheduler(cls, cfg, optimizer):
# return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 10, T_mult=2)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
# add_coat_config(cfg)
add_mpvit_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.OUTPUT_DIR = os.path.join(cfg.OUTPUT_DIR, args.tag)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument("--debug", action="store_true", help="enable debug mode")
parser.add_argument("--tag", default='default', type=str, help="experimen tag")
args = parser.parse_args()
print("Command Line Args:", args)
if args.debug:
import debugpy
print("Enabling attach starts.")
debugpy.listen(address=('0.0.0.0', 9310))
debugpy.wait_for_client()
print("Enabling attach ends.")
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)