diff --git a/docs/source/index.md b/docs/source/index.md new file mode 100644 index 0000000..f1839b4 --- /dev/null +++ b/docs/source/index.md @@ -0,0 +1,73 @@ +--- +title: PeakPerformance documentation +--- + +# Welcome to the PeakPerformance documentation! + +[![](https://img.shields.io/pypi/v/peak-performance)](https://pypi.org/project/peak-performance) +[![](https://img.shields.io/badge/code%20on-Github-lightgrey)](https://github.com/JuBiotech/peak-performance) +[![](https://zenodo.org/badge/DOI/10.5281/zenodo.10255543.svg)](https://zenodo.org/doi/10.5281/zenodo.10255543) + + +``peak_performance`` is a Python toolbox for Bayesian inference of peak areas. + +It defines PyMC models describing the intensity curves of chromatographic peaks. + +Using Bayesian inference, this enables the fitting of peaks, yielding uncertainty estimates for retention times, peak height, area and much more. + +# Installation + +```bash +pip install peak-performance +``` + +You can also download the latest version from [GitHub](https://github.com/JuBiotech/peak-performance). + + +The documentation features various notebooks that demonstrate the usage. + +```{toctree} +:caption: Tutorials +:maxdepth: 1 + +markdown/Installation +markdown/Preparing_raw_data +markdown/Peak_model_composition +markdown/PeakPerformance_validation +markdown/PeakPerformance_workflow +markdown/Diagnostic_plots +markdown/How_to_adapt_PeakPerformance_to_your_data +``` + + +```{toctree} +:caption: Examples +:maxdepth: 1 + +notebooks/Ex1_Simple_Pipeline.ipynb +notebooks/Ex2_Custom_Use_of_PeakPerformance.ipynb +notebooks/Ex3_Pipeline_with_larger_example_dataset.ipynb +``` + + +In the following case studies we investigate certain aspects of peak modeling. + +```{toctree} +:caption: Case Studies +:maxdepth: 1 + +notebooks/Investigation_doublepeak_separation.ipynb +notebooks/Investigation_noise_sigma.ipynb +``` + + +Below you can find documentation that was automatically generated from docstrings. + +```{toctree} +:caption: API Reference +:maxdepth: 1 + +pp_models +pp_pipeline +pp_plots +``` diff --git a/docs/source/index.rst b/docs/source/index.rst deleted file mode 100644 index 89ffaeb..0000000 --- a/docs/source/index.rst +++ /dev/null @@ -1,61 +0,0 @@ -Welcome to the PeakPerformance documentation! -============================================= - -.. image:: https://img.shields.io/pypi/v/peak-performance - :target: https://pypi.org/project/peak-performance - -.. image:: https://img.shields.io/badge/code%20on-Github-lightgrey - :target: https://github.com/JuBiotech/peak-performance - -.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.10255543.svg - :target: https://zenodo.org/doi/10.5281/zenodo.10255543 - - -``peak_performance`` is a Python toolbox for Bayesian inference of peak areas. - -It defines PyMC models describing the intensity curves of chromatographic peaks. - -Using Bayesian inference, this enables the fitting of peaks, yielding uncertainty estimates for retention times, peak height, area and much more. - -Installation -============ - -.. code-block:: bash - - pip install peak-performance - -You can also download the latest version from `GitHub `_. - -Tutorials -========= - -The documentation features various notebooks that demonstrate the usage and investigate certain aspects of peak modeling. - -.. toctree:: - :maxdepth: 1 - - markdown/Installation - markdown/Preparing_raw_data - markdown/Peak_model_composition - markdown/PeakPerformance_validation - markdown/PeakPerformance_workflow - markdown/Diagnostic_plots - markdown/How_to_adapt_PeakPerformance_to_your_data - notebooks/Ex1_Simple_Pipeline.ipynb - notebooks/Ex2_Custom_Use_of_PeakPerformance.ipynb - notebooks/Ex3_Pipeline_with_larger_example_dataset.ipynb - notebooks/Investigation_doublepeak_separation.ipynb - notebooks/Investigation_noise_sigma.ipynb - notebooks/Processing_test_1_raw_data.ipynb - notebooks/Create_validation_plot_from_raw_data.ipynb - - -API Reference -============= - -.. toctree:: - :maxdepth: 2 - - pp_models - pp_pipeline - pp_plots