-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild.py
46 lines (40 loc) · 1.59 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import argparse
from models.engine import EngineBuilder
BATCH_SIZE = 16
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--weights',
type=str,
default='weights/best-yolo8m.onnx',
help='Weights file')
parser.add_argument('--input_shape',
nargs='+',
type=int,
default=[BATCH_SIZE,3, 640, 640],
help='Model input shape, el primer valor es el batch_size, 128)]')
parser.add_argument('--fp32',
action='store_true',
help='Build model with fp32 mode')
parser.add_argument('--fp16',
action='store_true',
help='Build model with fp16 mode')
parser.add_argument('--int8',
action='store_true',
help='Build model with int8 mode')
parser.add_argument('--device',
type=str,
default='cuda:0',
help='TensorRT builder device')
parser.add_argument('--seg',
action='store_true',
help='Build seg model by onnx')
args = parser.parse_args()
assert len(args.input_shape) == 4
return args
def main(args):
builder = EngineBuilder(args.weights, args.device)
builder.seg = args.seg
builder.build(fp32=args.fp32, fp16=args.fp16, int8=args.int8, input_shape=args.input_shape)
if __name__ == '__main__':
args = parse_args()
main(args)