diff --git a/.ipynb_checkpoints/Connect Python_MySQL-D-checkpoint.ipynb b/.ipynb_checkpoints/Connect Python_MySQL-D-checkpoint.ipynb index b71be91..6d9880e 100644 --- a/.ipynb_checkpoints/Connect Python_MySQL-D-checkpoint.ipynb +++ b/.ipynb_checkpoints/Connect Python_MySQL-D-checkpoint.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "bae75f73", + "id": "33ee8b59", "metadata": {}, "source": [ "#### Dataframes list:\n", @@ -30,18 +30,20 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 81, "id": "7d5eb017", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", - "import numpy as np" + "import numpy as np\n", + "import seaborn as sns\n", + "import matplotlib as plt" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 77, "id": "5829c50a", "metadata": {}, "outputs": [], @@ -50,6 +52,7 @@ "import sqlalchemy as sa\n", "pd.options.display.max_rows = 10\n", "\n", + "\n", "# sqlalchemy is a \"toolkit\" that allows access to SQL databases through python. SQL tables can be queried and directly brought to python objects" ] }, @@ -101536,7 +101539,7 @@ { "cell_type": "code", "execution_count": 34, - "id": "57d22638", + "id": "9aa02fc1", "metadata": {}, "outputs": [], "source": [ @@ -101550,7 +101553,7 @@ }, { "cell_type": "markdown", - "id": "f6de9309", + "id": "00081ac5", "metadata": {}, "source": [ "----" @@ -101591,18 +101594,18 @@ { "cell_type": "code", "execution_count": 51, - "id": "09157c37", + "id": "4483baec", "metadata": {}, "outputs": [], "source": [ "# removing missing date values\n", - "orders_df.dropna(subset=[\"order_approved_at\",\"order_delivered_carrier_date\",\"order_delivered_customer_date\"],inplace=True)" + "orders_df.dropna(subset=[\"order_purchase_timestamp\",\"order_approved_at\",\"order_delivered_carrier_date\",\"order_delivered_customer_date\",\"order_estimated_delivery_date\"],inplace=True)" ] }, { "cell_type": "code", "execution_count": 38, - "id": "2d9dec7c", + "id": "c65fa567", "metadata": {}, "outputs": [ { @@ -101738,7 +101741,7 @@ { "cell_type": "code", "execution_count": 39, - "id": "7f084a9f", + "id": "33a1071c", "metadata": {}, "outputs": [], "source": [ @@ -101748,7 +101751,7 @@ { "cell_type": "code", "execution_count": 40, - "id": "fe605f17", + "id": "0be07bdc", "metadata": {}, "outputs": [ { @@ -101769,7 +101772,7 @@ { "cell_type": "code", "execution_count": 41, - "id": "d015a01c", + "id": "c6a7907f", "metadata": {}, "outputs": [ { @@ -101790,7 +101793,7 @@ { "cell_type": "code", "execution_count": 42, - "id": "247c06b0", + "id": "f844408d", "metadata": {}, "outputs": [ { @@ -101811,7 +101814,7 @@ { "cell_type": "code", "execution_count": 43, - "id": "6e7bbe7a", + "id": "d5024e70", "metadata": {}, "outputs": [ { @@ -101832,7 +101835,7 @@ { "cell_type": "code", "execution_count": 44, - "id": "d79bc3a1", + "id": "3a4da828", "metadata": {}, "outputs": [ { @@ -101853,7 +101856,7 @@ { "cell_type": "code", "execution_count": 45, - "id": "ab23ce0f", + "id": "a2b49561", "metadata": {}, "outputs": [ { @@ -101874,7 +101877,7 @@ { "cell_type": "code", "execution_count": 46, - "id": "d2296b46", + "id": "1acd8906", "metadata": {}, "outputs": [ { @@ -101895,7 +101898,7 @@ { "cell_type": "code", "execution_count": 47, - "id": "2fe94389", + "id": "123c2b15", "metadata": {}, "outputs": [ { @@ -101952,7 +101955,7 @@ { "cell_type": "code", "execution_count": null, - "id": "847d35ed", + "id": "0086572c", "metadata": {}, "outputs": [], "source": [ @@ -101964,7 +101967,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b2919f91", + "id": "75555832", "metadata": {}, "outputs": [], "source": [ @@ -102136,7 +102139,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5eae60f9", + "id": "8cbe2e2f", "metadata": {}, "outputs": [], "source": [ @@ -102146,7 +102149,7 @@ { "cell_type": "code", "execution_count": 57, - "id": "deb6f240", + "id": "964356e6", "metadata": {}, "outputs": [], "source": [ @@ -102156,13 +102159,61 @@ { "cell_type": "code", "execution_count": 61, - "id": "b59c1b6b", + "id": "1d567014", "metadata": {}, "outputs": [], "source": [ "orders_df = drop_na(orders_df)" ] }, + { + "cell_type": "code", + "execution_count": 73, + "id": "eefe78fd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "orders_df.isnull().values.any().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "945bfeb9", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'plt' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mfig\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mconstrained_layout\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfigsize\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m13\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m12\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0max1\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd_subplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mgs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0max2\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd_subplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mgs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0msns\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcountplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcustomers_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'customer_state'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0max\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0max1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'rainbow_r'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mtotal\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcustomers_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'customer_state'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mNameError\u001b[0m: name 'plt' is not defined" + ] + } + ], + "source": [ + "fig = plt.figure(constrained_layout=True, figsize=(13, 12))\n", + "ax1 = fig.add_subplot(gs[0, :])\n", + "ax2 = fig.add_subplot(gs[1, :])\n", + "sns.countplot(x=customers_df['customer_state'], ax=ax1, palette='rainbow_r')\n", + "total = len(customers_df['customer_state'])\n", + "plt.show()" + ] + }, { "cell_type": "markdown", "id": "c55bb1ab", @@ -102176,81 +102227,81 @@ { "cell_type": "code", "execution_count": 64, - "id": "28f87934", + "id": "ef2d5c70", "metadata": {}, "outputs": [], "source": [ - "trans_product_df.to_csv('trans_product_df.csv')" + "trans_product_df.to_csv('trans_product_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 65, - "id": "f90dac5b", + "id": "c9000f67", "metadata": {}, "outputs": [], "source": [ - "orders_df.to_csv('orders_df.csv')" + "orders_df.to_csv('orders_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 66, - "id": "f2ba3bca", + "id": "4743fee1", "metadata": {}, "outputs": [], "source": [ - "customers_df.to_csv('customers_df.csv')" + "customers_df.to_csv('customers_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 67, - "id": "a0e1692d", + "id": "fdcf6891", "metadata": {}, "outputs": [], "source": [ - "order_payments_df.to_csv('order_payments_df.csv')" + "order_payments_df.to_csv('order_payments_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 68, - "id": "5834b478", + "id": "4498813e", "metadata": {}, "outputs": [], "source": [ - "order_items_df.to_csv('order_items_df.csv')" + "order_items_df.to_csv('order_items_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 69, - "id": "067fcb4d", + "id": "913ffcd5", "metadata": {}, "outputs": [], "source": [ - "order_customer_items_paid_df.to_csv('order_customer_items_paid_df.csv')" + "order_customer_items_paid_df.to_csv('order_customer_items_paid_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 70, - "id": "5c7c9f14", + "id": "a5e13af7", "metadata": {}, "outputs": [], "source": [ - "cleaned_geo.to_csv('cleaned_geo.csv')" + "cleaned_geo.to_csv('cleaned_geo.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 71, - "id": "c5f22a9c", + "id": "a557d72a", "metadata": {}, "outputs": [], "source": [ - "sellers_df.to_csv('sellers_df.csv')" + "sellers_df.to_csv('sellers_df.csv', index=False)" ] }, { diff --git a/Connect Python_MySQL-D.ipynb b/Connect Python_MySQL-D.ipynb index b71be91..6d9880e 100644 --- a/Connect Python_MySQL-D.ipynb +++ b/Connect Python_MySQL-D.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "bae75f73", + "id": "33ee8b59", "metadata": {}, "source": [ "#### Dataframes list:\n", @@ -30,18 +30,20 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 81, "id": "7d5eb017", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", - "import numpy as np" + "import numpy as np\n", + "import seaborn as sns\n", + "import matplotlib as plt" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 77, "id": "5829c50a", "metadata": {}, "outputs": [], @@ -50,6 +52,7 @@ "import sqlalchemy as sa\n", "pd.options.display.max_rows = 10\n", "\n", + "\n", "# sqlalchemy is a \"toolkit\" that allows access to SQL databases through python. SQL tables can be queried and directly brought to python objects" ] }, @@ -101536,7 +101539,7 @@ { "cell_type": "code", "execution_count": 34, - "id": "57d22638", + "id": "9aa02fc1", "metadata": {}, "outputs": [], "source": [ @@ -101550,7 +101553,7 @@ }, { "cell_type": "markdown", - "id": "f6de9309", + "id": "00081ac5", "metadata": {}, "source": [ "----" @@ -101591,18 +101594,18 @@ { "cell_type": "code", "execution_count": 51, - "id": "09157c37", + "id": "4483baec", "metadata": {}, "outputs": [], "source": [ "# removing missing date values\n", - "orders_df.dropna(subset=[\"order_approved_at\",\"order_delivered_carrier_date\",\"order_delivered_customer_date\"],inplace=True)" + "orders_df.dropna(subset=[\"order_purchase_timestamp\",\"order_approved_at\",\"order_delivered_carrier_date\",\"order_delivered_customer_date\",\"order_estimated_delivery_date\"],inplace=True)" ] }, { "cell_type": "code", "execution_count": 38, - "id": "2d9dec7c", + "id": "c65fa567", "metadata": {}, "outputs": [ { @@ -101738,7 +101741,7 @@ { "cell_type": "code", "execution_count": 39, - "id": "7f084a9f", + "id": "33a1071c", "metadata": {}, "outputs": [], "source": [ @@ -101748,7 +101751,7 @@ { "cell_type": "code", "execution_count": 40, - "id": "fe605f17", + "id": "0be07bdc", "metadata": {}, "outputs": [ { @@ -101769,7 +101772,7 @@ { "cell_type": "code", "execution_count": 41, - "id": "d015a01c", + "id": "c6a7907f", "metadata": {}, "outputs": [ { @@ -101790,7 +101793,7 @@ { "cell_type": "code", "execution_count": 42, - "id": "247c06b0", + "id": "f844408d", "metadata": {}, "outputs": [ { @@ -101811,7 +101814,7 @@ { "cell_type": "code", "execution_count": 43, - "id": "6e7bbe7a", + "id": "d5024e70", "metadata": {}, "outputs": [ { @@ -101832,7 +101835,7 @@ { "cell_type": "code", "execution_count": 44, - "id": "d79bc3a1", + "id": "3a4da828", "metadata": {}, "outputs": [ { @@ -101853,7 +101856,7 @@ { "cell_type": "code", "execution_count": 45, - "id": "ab23ce0f", + "id": "a2b49561", "metadata": {}, "outputs": [ { @@ -101874,7 +101877,7 @@ { "cell_type": "code", "execution_count": 46, - "id": "d2296b46", + "id": "1acd8906", "metadata": {}, "outputs": [ { @@ -101895,7 +101898,7 @@ { "cell_type": "code", "execution_count": 47, - "id": "2fe94389", + "id": "123c2b15", "metadata": {}, "outputs": [ { @@ -101952,7 +101955,7 @@ { "cell_type": "code", "execution_count": null, - "id": "847d35ed", + "id": "0086572c", "metadata": {}, "outputs": [], "source": [ @@ -101964,7 +101967,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b2919f91", + "id": "75555832", "metadata": {}, "outputs": [], "source": [ @@ -102136,7 +102139,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5eae60f9", + "id": "8cbe2e2f", "metadata": {}, "outputs": [], "source": [ @@ -102146,7 +102149,7 @@ { "cell_type": "code", "execution_count": 57, - "id": "deb6f240", + "id": "964356e6", "metadata": {}, "outputs": [], "source": [ @@ -102156,13 +102159,61 @@ { "cell_type": "code", "execution_count": 61, - "id": "b59c1b6b", + "id": "1d567014", "metadata": {}, "outputs": [], "source": [ "orders_df = drop_na(orders_df)" ] }, + { + "cell_type": "code", + "execution_count": 73, + "id": "eefe78fd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "orders_df.isnull().values.any().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "945bfeb9", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'plt' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mfig\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mconstrained_layout\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfigsize\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m13\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m12\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0max1\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd_subplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mgs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0max2\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd_subplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mgs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0msns\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcountplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcustomers_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'customer_state'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0max\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0max1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'rainbow_r'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mtotal\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcustomers_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'customer_state'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mNameError\u001b[0m: name 'plt' is not defined" + ] + } + ], + "source": [ + "fig = plt.figure(constrained_layout=True, figsize=(13, 12))\n", + "ax1 = fig.add_subplot(gs[0, :])\n", + "ax2 = fig.add_subplot(gs[1, :])\n", + "sns.countplot(x=customers_df['customer_state'], ax=ax1, palette='rainbow_r')\n", + "total = len(customers_df['customer_state'])\n", + "plt.show()" + ] + }, { "cell_type": "markdown", "id": "c55bb1ab", @@ -102176,81 +102227,81 @@ { "cell_type": "code", "execution_count": 64, - "id": "28f87934", + "id": "ef2d5c70", "metadata": {}, "outputs": [], "source": [ - "trans_product_df.to_csv('trans_product_df.csv')" + "trans_product_df.to_csv('trans_product_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 65, - "id": "f90dac5b", + "id": "c9000f67", "metadata": {}, "outputs": [], "source": [ - "orders_df.to_csv('orders_df.csv')" + "orders_df.to_csv('orders_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 66, - "id": "f2ba3bca", + "id": "4743fee1", "metadata": {}, "outputs": [], "source": [ - "customers_df.to_csv('customers_df.csv')" + "customers_df.to_csv('customers_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 67, - "id": "a0e1692d", + "id": "fdcf6891", "metadata": {}, "outputs": [], "source": [ - "order_payments_df.to_csv('order_payments_df.csv')" + "order_payments_df.to_csv('order_payments_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 68, - "id": "5834b478", + "id": "4498813e", "metadata": {}, "outputs": [], "source": [ - "order_items_df.to_csv('order_items_df.csv')" + "order_items_df.to_csv('order_items_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 69, - "id": "067fcb4d", + "id": "913ffcd5", "metadata": {}, "outputs": [], "source": [ - "order_customer_items_paid_df.to_csv('order_customer_items_paid_df.csv')" + "order_customer_items_paid_df.to_csv('order_customer_items_paid_df.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 70, - "id": "5c7c9f14", + "id": "a5e13af7", "metadata": {}, "outputs": [], "source": [ - "cleaned_geo.to_csv('cleaned_geo.csv')" + "cleaned_geo.to_csv('cleaned_geo.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 71, - "id": "c5f22a9c", + "id": "a557d72a", "metadata": {}, "outputs": [], "source": [ - "sellers_df.to_csv('sellers_df.csv')" + "sellers_df.to_csv('sellers_df.csv', index=False)" ] }, {