From 3574735e147155417bee085c6fc733668f6030ac Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Sun, 28 Jul 2024 13:16:19 +0000 Subject: [PATCH] build based on 5f0623a --- dev/.documenter-siteinfo.json | 2 +- dev/api/index.html | 6 +++--- dev/index.html | 2 +- dev/objects.inv | 2 +- 4 files changed, 6 insertions(+), 6 deletions(-) diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 7e6d488..d87ab09 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-07-27T12:30:21","documenter_version":"1.5.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-07-28T13:16:15","documenter_version":"1.5.0"}} \ No newline at end of file diff --git a/dev/api/index.html b/dev/api/index.html index 7409d4b..f87e859 100644 --- a/dev/api/index.html +++ b/dev/api/index.html @@ -5,7 +5,7 @@ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & Ĥ(t) & Ĥₙ \\ 0 & 0 & \dots & 0 & Ĥ(t) -\end{pmatrix}\]

Note that the $∂G/∂ϵₗ(t)$ ($Ĥₗ$ in the above example) may be time-dependent, to account for the possibility of non-linear control terms.

source
QuantumGradientGenerators.GradVectorType

Extended state-vector for the dynamic gradient.

Ψ̃ = GradVector(Ψ, num_controls)

for an initial state Ψ and num_controls control fields.

The GradVector conceptually corresponds to a direct-sum (block) column-vector $Ψ̃ = (|Ψ̃₁⟩, |Ψ̃₂⟩, … |Ψ̃ₙ⟩, |Ψ⟩)^T$, where $n$ is num_controls. With a matching $G̃$ as in the documentation of GradGenerator, we have

\[G̃ Ψ̃ = \begin{pmatrix} +\end{pmatrix}\]

Note that the $∂G/∂ϵₗ(t)$ ($Ĥₗ$ in the above example) may be time-dependent, to account for the possibility of non-linear control terms.

source
QuantumGradientGenerators.GradVectorType

Extended state-vector for the dynamic gradient.

Ψ̃ = GradVector(Ψ, num_controls)

for an initial state Ψ and num_controls control fields.

The GradVector conceptually corresponds to a direct-sum (block) column-vector $Ψ̃ = (|Ψ̃₁⟩, |Ψ̃₂⟩, … |Ψ̃ₙ⟩, |Ψ⟩)^T$, where $n$ is num_controls. With a matching $G̃$ as in the documentation of GradGenerator, we have

\[G̃ Ψ̃ = \begin{pmatrix} Ĥ |Ψ̃₁⟩ + Ĥ₁|Ψ⟩ \\ \vdots \\ Ĥ |Ψ̃ₙ⟩ + Ĥₙ|Ψ⟩ \\ @@ -16,6 +16,6 @@ \vdots \\ \frac{∂}{∂ϵₙ} e^{-i Ĥ dt} |Ψ⟩ \\ e^{-i Ĥ dt} |Ψ⟩ -\end{pmatrix}.\]

Upon initialization, $|Ψ̃₁⟩…|Ψ̃ₙ⟩$ are zero.

source
QuantumGradientGenerators.GradgenOperatorType

Static generator for the dynamic gradient.

using QuantumPropagators.Controls: evaluate
+\end{pmatrix}.\]

Upon initialization, $|Ψ̃₁⟩…|Ψ̃ₙ⟩$ are zero.

source
QuantumGradientGenerators.GradgenOperatorType

Static generator for the dynamic gradient.

using QuantumPropagators.Controls: evaluate
 
-G::GradgenOperator = evaluate(gradgen::GradGenerator; vals_dict)

is the result of plugging in specific values for all controls in a GradGenerator.

The resulting object can be multiplied directly with a GradVector, e.g., in the process of evaluating a piecewise-constant time propagation.

source
QuantumGradientGenerators.resetgradvec!Method

Reset the given gradient vector for a new gradient evaluation.

resetgradvec!(Ψ̃::GradVector)

zeroes out Ψ̃.grad_states but leaves Ψ̃.state unaffected. This is possible whether or not Ψ̃ supports in-place operations (QuantumPropagators.Interfaces.supports_inplace)

resetgradvec!(Ψ̃::GradVector, Ψ)

additionally sets Ψ̃.state to Ψ, which requires that Ψ̃.state supports in-place operations.

Returns Ψ̃.

source
+G::GradgenOperator = evaluate(gradgen::GradGenerator; vals_dict)

is the result of plugging in specific values for all controls in a GradGenerator.

The resulting object can be multiplied directly with a GradVector, e.g., in the process of evaluating a piecewise-constant time propagation.

source
QuantumGradientGenerators.resetgradvec!Method

Reset the given gradient vector for a new gradient evaluation.

resetgradvec!(Ψ̃::GradVector)

zeroes out Ψ̃.grad_states but leaves Ψ̃.state unaffected. This is possible whether or not Ψ̃ supports in-place operations (QuantumPropagators.Interfaces.supports_inplace)

resetgradvec!(Ψ̃::GradVector, Ψ)

additionally sets Ψ̃.state to Ψ, which requires that Ψ̃.state supports in-place operations.

Returns Ψ̃.

source
diff --git a/dev/index.html b/dev/index.html index c472d53..0bfd080 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,2 +1,2 @@ -Home · QuantumGradientGenerators.jl
+Home · QuantumGradientGenerators.jl
diff --git a/dev/objects.inv b/dev/objects.inv index 199f50f..ed89c53 100644 --- a/dev/objects.inv +++ b/dev/objects.inv @@ -1,6 +1,6 @@ # Sphinx inventory version 2 # Project: QuantumGradientGenerators.jl -# Version: 0.1.6+dev +# Version: 0.1.7+dev # The remainder of this file is compressed using zlib. x 0}^o.= c3H4&+V?f"$Ǟw ģhMCoV0itf ͌ٝ7RKz;T]wxkhc[Nf@Ic~@Il)3%r1$T#CT"Kp9:X