forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetr_mla_512x512_160k_b8_ade20k.py
85 lines (83 loc) · 2.57 KB
/
setr_mla_512x512_160k_b8_ade20k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
_base_ = [
'../_base_/models/setr_mla.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
pretrained=None,
backbone=dict(
img_size=(512, 512),
drop_rate=0.,
init_cfg=dict(
type='Pretrained', checkpoint='pretrain/vit_large_p16.pth')),
decode_head=dict(num_classes=150),
auxiliary_head=[
dict(
type='FCNHead',
in_channels=256,
channels=256,
in_index=0,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=0,
kernel_size=1,
concat_input=False,
num_classes=150,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='FCNHead',
in_channels=256,
channels=256,
in_index=1,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=0,
kernel_size=1,
concat_input=False,
num_classes=150,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='FCNHead',
in_channels=256,
channels=256,
in_index=2,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=0,
kernel_size=1,
concat_input=False,
num_classes=150,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='FCNHead',
in_channels=256,
channels=256,
in_index=3,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=0,
kernel_size=1,
concat_input=False,
num_classes=150,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
],
test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)),
)
optimizer = dict(
lr=0.001,
weight_decay=0.0,
paramwise_cfg=dict(custom_keys={'head': dict(lr_mult=10.)}))
# num_gpus: 8 -> batch_size: 8
data = dict(samples_per_gpu=1)