-
Notifications
You must be signed in to change notification settings - Fork 10
/
test2.py
49 lines (45 loc) · 2.15 KB
/
test2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
Test script for BIDeN. This script will run all test cases ( 2^N -1, N = max number of component).
We test the detailed case results of Task I using this script.
"""
import os
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util import html
import util.util as util
from itertools import combinations
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
opt.num_threads = 0 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
train_dataset = create_dataset(util.copyconf(opt, phase="train"))
model = create_model(opt) # create a model given opt.model and other options
web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
opt.test_choice = 0
dic = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H'}
items = []
all = []
for i in range(opt.max_domain):
items += dic[i]
for s in range(1, (len(items) + 1)):
for p in combinations(items, s):
cur = ''
for i in range(s):
cur = cur + p[i]
all.append(cur)
for j in range(len(all)):
current = all[j]
opt.test_input = current
if j == 0:
model.setup(opt) # regular setup: load and print networks; create schedulers
model.parallelize()
print("Current test", current)
for i, data in enumerate(dataset):
model.set_input(data) # unpack data from data loader
model.test() # run inference